Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Imran, T."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Self-compression of attosecond high-order harmonic pulses
    (2007) Kim, K.T.; Kang, K.S.; Park, M.N.; Imran, T.; Umesh, G.; Nam, C.H.
    Self-compression of attosecond high-order harmonic pulses in the harmonic generation medium itself has been demonstrated. The attosecond pulses were generated in an argon-filled gas cell and compressed by exploiting the dispersion characteristics of argon. Since the harmonic generation medium itself was used as the compression medium, continuous chirp control was easily achieved by adjusting the gas pressure. The optimized attosecond pulse was also the most intense, and its duration of 206 as was very close to the transform-limited value of 200 as. 2007 The American Physical Society.
  • No Thumbnail Available
    Item
    Self-compression of attosecond high-order harmonic pulses
    (2007) Kim, K.T.; Kang, K.S.; Park, M.N.; Imran, T.; Umesh, G.; Nam, C.H.
    Self-compression of attosecond high-order harmonic pulses in the harmonic generation medium itself has been demonstrated. The attosecond pulses were generated in an argon-filled gas cell and compressed by exploiting the dispersion characteristics of argon. Since the harmonic generation medium itself was used as the compression medium, continuous chirp control was easily achieved by adjusting the gas pressure. The optimized attosecond pulse was also the most intense, and its duration of 206 as was very close to the transform-limited value of 200 as. © 2007 The American Physical Society.

Maintained by Central Library NITK | DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify