Browsing by Author "Bonthu, D."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item 3D printed functionally graded foams response under transverse load(Elsevier B.V., 2023) Bonthu, D.; Mahesh, V.; Powar, S.; Doddamani, M.The applications of 3D printing are rapidly increasing in aerospace and naval applications. Nonetheless, 3D printing (3DP) of graded foams exhibiting property variation along the thickness direction is yet to be explored. In the current work, the different volume fractions of hollow glass micro balloon (GMB) reinforced high-density polyethylene (HDPE) composite based graded foams are 3D printed using the fused deposition modelling (FDM) technique. The bonding between successive layers and porosity distribution of these graded configurations are studied using micro-CT scan. Further, the 3D Printed functionally graded foams (FGFs) are tested for flexural response, and results are compared with numerical values. The micro-CT results showed delamination absence between the layers. In neat HDPE layers, porosity is not evident, while minor porosity creeps in the layers having the highest GMB content. Experimental results of the flexural test showed that the graded sandwiches exhibited better strength than the graded core alone. Compared to neat HDPE, the modulus of FGF-2 (H20–H40–H60) increased by 33.83%, implying better mechanical stiffness. Among all the FGFs, FGF-2 exhibited a better specific modulus. A comparative study of experimental and numerical results showed a slight deviation due to neglecting the induced porosity. © 2023 The AuthorsItem 3D printing of syntactic foam cored sandwich composite(Elsevier B.V., 2020) Bonthu, D.; Bharath, H.S.; Gururaja, S.; Prabhakar, P.; Doddamani, M.In additive manufacturing, fused filament fabrication (FFF) based three-dimensional printing (3DP) is one of the most popular rapid processing technologies. The key benefit of 3DP is the ability to build integrated, complex, and tailored components. Optimization of feedstock material and associated 3DP process to achieve the required properties for various applications has been an important research field in the recent past. The main objective of this paper is 3DP of syntactic foam cored sandwich composite all at once (skin-core-skin printing in sequence at once). High density polyethylene (HDPE) and glass microballoon (GMB) reinforced (20, 40, and 60 by volume%) HDPE blends are fed into the extruder for manufacturing respective filaments. These HDPE and HDPE/GMB filaments are further sent to the FFF based printer to realize skin and syntactic foam core respectively of the sandwich. The selection of substrate for printing and the crucial issues associated with the printing of core and sandwich composites are analyzed. The present work successfully demonstrates that by optimizing the printing parameters, good quality core and sandwich structures can be printed all at once without any defects. Finally, the suitable printing parameters are used as boundary conditions in finite element (FE) simulation of sandwich for carrying out thermomechanical analysis to analyze the thermal stress distributions in the prints. © 2020Item Additive Manufacturing of Short Silk Fiber Reinforced PETG Composites(Elsevier Ltd, 2022) Kn, V.; Bonthu, D.; Doddamani, M.; Pati, F.The growing demand for customized medical devices like prostheses, orthoses, and implants is the prime motive for a surge in the investigation of 3D printable biocomposites. PETG (Polyethylene terephthalate glycol) based composites can be a good choice for biomedical applications. Specific characteristics of this material like biocompatibility, ease of formability, stable thermomechanical properties, and high chemical, and abrasion resistance make it suitable for biomedical applications. However, there are very few studies on the 3D printing of PETG-based composites. Development of a robust 3D printing protocol is required for any novel natural fiber reinforced PETG composites. This study presents natural fiber-reinforced PETG biocomposite filament preparation and 3D printing with the developed composite filaments. Silk was used as a filler material due to its high thermal stability and high tensile strength. Composite filaments with 2 wt%, 5 wt%, and 10 wt% silk were prepared using the extrusion process. Further, we developed a protocol for 3D printing with the developed composites to fabricate various 3D structure. Both filaments and printed specimens were characterized morphologically, structurally, and mechanically. The melt flow rate of the filaments decreased with an increase in fiber content which was a bottleneck for printing 10% silk-PETG composites. Micro-CT results validate an increase in void content in filaments on filler addition. The highest flexural modulus and flexural strength were exhibited by 2% silk-PETG printed parts and a 60% increase in compressive modulus compared to pure PETG. Tensile tests show that 2 wt% fiber addition significantly increased elastic modulus (2466.72 MPa) compared to pure PETG (902.81 MPa), whereas the surface roughness of printed composites increased with filler content. Finally, a lower limb prosthetic socket prototype was printed with a desktop 3D printer to demonstrate its potential for biomedical applications. © 2022 Elsevier LtdItem Buckling and free vibrations behaviour through differential quadrature method for foamed composites(Elsevier B.V., 2023) Duryodhana, D.; Waddar, S.; Bonthu, D.; Jeyaraj, P.; Powar, S.; Doddamani, M.The current work focuses on predicting the buckling and free vibration frequencies (fn) of cenosphere reinforced epoxy based syntactic foam beam under varying loads. Critical buckling loads (Ncr) and fn are predicted using the differential quadrature method (DQM). Ncr and fn have been calculated for beams of varying cenosphere volume fractions subjected to axial load under clamped-clamped (CC), clamped-simply (CS), simply-simply (SS), and clamped-free (CF) boundary conditions (BC′s). Upon increasing the cenosphere volume fraction, Ncr and fn of syntactic foam composites increases. These numerical outcomes are compared with the theoretical values evaluated through the Euler-Bernoulli hypothesis and further compared with experimental outcomes. Results are observed to be in precise agreement. The results of the DQM numerical analysis are given out for the different BC′s, aspect ratios, cenosphere volume fractions, and varying loads. It is perceived that depending on the BC′s, the type of axial varying loads and aspect ratios has a substantial effect on the Ncr and fn behaviour of the syntactic foam beams. A comparative study of the obtained results showed that the beam subjected to parabolic load under CC boundary conditions exhibited a higher buckling load. © 2023 The AuthorsItem Dynamic impact resistance of composite sandwich panels with 3-D printed polymer syntactic foam cores(DEStech Publications, 2021) Tewani, H.R.; Bonthu, D.; Bharath, H.S.; Doddamani, M.; Prabhakar, P.Polymer-based syntactic foams find use in the marine industry as primary structural materials due to their inherent lightweight nature and enhanced mechanical properties relative to pure HDPE. 3-D printing these materials circumvents the use of joining assemblies, enabling the production of complex shapes as standalone structures. Although the quasi-static response of these 3D printed foams has been well studied independently in recent years, their dynamic impact resistance and tolerance as potential core material for sandwich panels have not been the focus. Moreover, 3D printing is known to impart directionality in the printed syntactic foams, which may introduce failure mechanisms typically not observed in molded foams. It is therefore important to investigate the mechanics of 3-D printed syntactic foam core composite sandwich structures under impact loading and characterize their failure mechanisms for establishing dynamic impact resistance. To this end, 3-D printed syntactic foams have been developed using rasters of High-Density Polyethylene (HDPE) and Glass MicroBalloon (GMB) fillers by adopting the Fused Raster Fabrication (FFF) technique. The current study is performed to assess the impact performance of these composite foam cores based on the volume fraction of fillers and print orientation. The weight percentage of GMB fillers in printed specimens ranges from 0% to 60% in increments of 20%. This study presents the impact response of these composite sandwich panels at different energy levels, in compliance with ASTM D7136/D7136M - 20. Observations suggest that an increase in GMB % in HDPE matrix improves the impact performance in terms of the peak load of the material, but the failure behavior becomes brittle to an extent. Observing the failed specimens under a Micro-CT scanner captures the failure morphologies and helps characterize failure processes during impact. It is noticed that core materials with higher GMB content are prone to individual raster breakage and delamination at the back face, in addition to debonding between individual rasters. Specimens printed along the longer dimension (y-direction) impart more warping in the final sandwich structures than that of specimens printed along the shorter dimension (x-direction). Therefore, they are more susceptible to delamination at the back face. Addition of GMB fillers mitigate the tendency of the sandwich panels to warp. © 2021 36th Technical Conference of the American Society for Composites 2021: Composites Ingenuity Taking on Challenges in Environment-Energy-Economy, ASC 2021. All Rights Reserved.Item Dynamic response of 3D printed functionally graded sandwich foams(Emerald Publishing, 2023) Bonthu, D.; Bharath, B.; Bekinal, S.I.; Jeyaraj, J.; Doddamani, M.Purpose: The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses. Design/methodology/approach: Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria. Findings: The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend. Originality/value: The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load. © 2023, Emerald Publishing Limited.Item Flexural response of 3D printed sandwich composite(Elsevier Ltd, 2021) Bharath, H.S.; Bonthu, D.; Gururaja, S.; Prabhakar, P.; Doddamani, M.Among many lightweight materials used in marine applications, sandwich structures with syntactic foam core are promising because of lower water uptake in foam core amid face-sheets damage. HDPE (high-density polyethylene) filament is used to 3D print sandwich skin, and glass microballoon (GMB) reinforced HDPE syntactic foam filaments are used for the core. The optimized parameters are used to prepare blends of 20, 40, and 60 vol% of GMB in HDPE. These foamed blends are extruded in filament form to be subsequently used in commercially available fused filament fabrication (FFF) based 3D printers. The defect-free syntactic foam core sandwich composites are 3D printed all at once (skin-core-skin printing in sequence at once) using optimized printing parameters and characterized for the flexural behavior. The result reveals that the addition of GMB increases both specific modulus and strength in sandwich composites and is highest for the sandwich having a core with 60 vol% of GMB. The measured properties of sandwiches are compared with a respective core to study the effect of the sandwich. It is observed that flexural strength, fracture strength, and strain of foam core sandwiches registered superior response than their respective cores. The experimental results are found in good agreement with theoretical predictions. Finally, the failure mode of the printed sandwich is also discussed, and it is observed that none of the 3D printed syntactic foam core sandwiches fractured due to shear failure. © 2021 Elsevier LtdItem Three-dimensional printed lightweight composite foams(American Chemical Society service@acs.org, 2020) Bharath, H.S.; Bonthu, D.; Prabhakar, P.; Doddamani, M.The goal of this paper is to enable three-dimensional (3D) printed lightweight composite foams by blending hollow glass microballoons (GMBs) with high density polyethylene (HDPE). To that end, lightweight feedstock for printing syntactic foam composites is developed. The blend for this is prepared by varying the GMB content (20, 40, and 60 volume %) in HDPE for filament extrusion, which is subsequently used for 3D printing. The rheological properties and the melt flow index (MFI) of blends are investigated for identifying suitable printing parameters. It is observed that the storage and loss modulus, as well as complex viscosity, increase with increasing GMB content, whereas MFI decreases. Further, the coefficient of thermal expansion of HDPE and foam filaments decreases with increasing GMB content, thereby lowering the thermal stresses in prints, which promotes the reduction in warpage. The mechanical properties of filaments are determined by subjecting them to tensile tests, whereas 3D printed samples are tested under tensile and flexure tests. The tensile modulus of the filament increases with increasing GMB content (8-47%) as compared to HDPE and exhibit comparable filament strength. 3D printed foams show a higher specific tensile and flexural modulus as compared to neat HDPE, making them suitable candidate materials for weight-sensitive applications. HDPE having 60% by volume GMB exhibited the highest modulus and is 48.02% higher than the printed HDPE. Finally, the property map reveals a higher modulus and comparable strength against injection-and compression-molded foams. Printed foam registered 1.8 times higher modulus than the molded samples. Hence, 3D printed foams have the potential for replacing components processed through conventional manufacturing processes that have limitations on geometrically complex designs, lead time, and associated costs. © © 2020 American Chemical Society.
