Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Biswal, R."

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Comparative Studies on Crystalline and Amorphous Vinylidene Fluoride Based Fibrous Polymer Electrolytes for Sodium-Ion Batteries
    (Springer Singapore, 2020) Janakiraman, S.; Khalifa, M.; Biswal, R.; Ghosh, S.; Anandhan, S.; Adyam, A.
    In the present work, electrospun poly (vinylidene fluoride) (PVDF) and poly (vinylidene fluoride-co hexafluropropylene) (P(VdF-co-HFP)) fibrous membranes have been compared. Porous homo and copolymer fiber-based membranes with an interconnected structure, high porosity, large electrolyte uptake were prepared by an electrospinning route. The effect of crystallinity in terms of X-ray diffraction (XRD) was investigated for the fibrous polymer membranes (FPMs). The surface morphology of the FPMs is evaluated by field emission scanning electronmicroscopy (FESEM). The FPMswere soaked in 1MNaClO4-ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, vol%) solution to form fibrous polymer electrolytes (FPEs). The ionic conductivity of copolymer showed 1.126 mS cm−1 under ambient temperature (at 28 °C) higher than the homopolymer (0.79 mS cm−1) because of HFP unit. The electrochemical stability window of the copolymer membrane also enhanced and stable up to 4.9 V versus Na+/Na suitable for high voltage sodium rechargeable batteries. When tested with Na066Fe0.5Mn05O2 as cathode and Na metal as an anode, the cycle performance significantly improved for the copolymer. © Springer Nature Singapore Pte Ltd. 2021.
  • No Thumbnail Available
    Item
    Electrochemical characterization of a polar ?-phase poly (vinylidene fluoride) gel electrolyte in sodium ion cell
    (2019) Janakiraman, S.; Surendran, A.; Biswal, R.; Ghosh, S.; Anandhan, S.; Venimadhav, A.
    A polar ?-phase poly (vinylidene fluoride) (PVDF) membrane is developed through the electrospinning method. PVDF gel electrolyte for sodium ion batteries was obtained by saturating the bare porous membrane in a liquid electrolyte, 1 M NaClO4 in EC: DEC (1:1 vol%). The physical and electrochemical characteristics of the polar ?-phase PVDF membrane are explored by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), sodium ion conductivity, linear sweep voltammetry (LSV) and sodium ion transference number. The ionic conductivity of a polar ?-phase PVDF gel electrolyte exhibited 9.2 10?4 S cm?1, higher than the commercially used Celgard 2400 membrane 0.36 10?4 S cm?1 at ambient temperature. The electrochemical expolarations of the sodium ion half-cell (Na2/3Fe1/2Mn1/2O2) as a cathode and sodium metal as a counter electrode) conducted from PVDF gel electrolyte are analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV of the battery showed a pseudo capacitive nature. The equivalent circuit model of the sodium ion cell brought out the effect of dipole moments in the polymer chains on the battery performance. 2018 Elsevier B.V.
  • No Thumbnail Available
    Item
    Electrochemical characterization of a polar ?-phase poly (vinylidene fluoride) gel electrolyte in sodium ion cell
    (Elsevier B.V., 2019) Janakiraman, S.; Surendran, A.; Biswal, R.; Ghosh, S.; Anandhan, S.; Adyam, A.
    A polar ?-phase poly (vinylidene fluoride) (PVDF) membrane is developed through the electrospinning method. PVDF gel electrolyte for sodium ion batteries was obtained by saturating the bare porous membrane in a liquid electrolyte, 1 M NaClO4 in EC: DEC (1:1 vol%). The physical and electrochemical characteristics of the polar ?-phase PVDF membrane are explored by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), sodium ion conductivity, linear sweep voltammetry (LSV) and sodium ion transference number. The ionic conductivity of a polar ?-phase PVDF gel electrolyte exhibited 9.2 × 10?4 S cm?1, higher than the commercially used Celgard® 2400 membrane 0.36 × 10?4 S cm?1 at ambient temperature. The electrochemical expolarations of the sodium ion half-cell (Na2/3Fe1/2Mn1/2O2) as a cathode and sodium metal as a counter electrode) conducted from PVDF gel electrolyte are analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV of the battery showed a pseudo capacitive nature. The equivalent circuit model of the sodium ion cell brought out the effect of dipole moments in the polymer chains on the battery performance. © 2018 Elsevier B.V.
  • No Thumbnail Available
    Item
    Electrospun electroactive polyvinylidene fluoride-based fibrous polymer electrolyte for sodium ion batteries
    (2019) Janakiraman, S.; Surendran, A.; Biswal, R.; Ghosh, S.; Anandhan, S.; Venimadhav, A.
    Electrospinning is an efficient technique to produce ultrafine electroactive mat, diameters ranging from few nanometers to micrometers to use as a separator in sodium ion battery. The polyvinylidene fluoride (PVDF) polymer solution was optimized to 19 wt%, applied voltage 25 kV and flow rate of 0.5 ml h-1 to get a bead free ultrafine electroactive structure. The electroactive ?-phase is confirmed by x-ray diffractometer (XRD). Ionic conductivities, electrolyte uptake, wettability, linear sweep voltammetry (LSV) and thermal stability of the electroactive fibrous polymer electrolyte (EFPE) were studied by soaking the separator with a liquid electrolyte of 1 M sodium hexafluorophosphate (NaPF6) dissolved in ethylene carbonate (EC)/propylene carbonate (PC) (1:1 vol%). The EFPE exhibits high ionic conductivity of 1.08 mS cm-1 and electrochemical stability window of 5.0 V versus Na/Na+ under ambient condition. The half-cell containing Na0.66Fe0.5Mn0.5O2 as cathode and EFPE as the separator cum electrolyte showed a stable cycling performance at a current rate of 0.1C. 2019 IOP Publishing Ltd.
  • No Thumbnail Available
    Item
    Electrospun electroactive polyvinylidene fluoride-based fibrous polymer electrolyte for sodium ion batteries
    (Institute of Physics Publishing helen.craven@iop.org, 2019) Janakiraman, S.; Surendran, A.; Biswal, R.; Ghosh, S.; Anandhan, S.; Adyam, A.
    Electrospinning is an efficient technique to produce ultrafine electroactive mat, diameters ranging from few nanometers to micrometers to use as a separator in sodium ion battery. The polyvinylidene fluoride (PVDF) polymer solution was optimized to 19 wt%, applied voltage 25 kV and flow rate of 0.5 ml h-1 to get a bead free ultrafine electroactive structure. The electroactive ?-phase is confirmed by x-ray diffractometer (XRD). Ionic conductivities, electrolyte uptake, wettability, linear sweep voltammetry (LSV) and thermal stability of the electroactive fibrous polymer electrolyte (EFPE) were studied by soaking the separator with a liquid electrolyte of 1 M sodium hexafluorophosphate (NaPF6) dissolved in ethylene carbonate (EC)/propylene carbonate (PC) (1:1 vol%). The EFPE exhibits high ionic conductivity of 1.08 mS cm-1 and electrochemical stability window of 5.0 V versus Na/Na+ under ambient condition. The half-cell containing Na0.66Fe0.5Mn0.5O2 as cathode and EFPE as the separator cum electrolyte showed a stable cycling performance at a current rate of 0.1C. © 2019 IOP Publishing Ltd.

Maintained by Central Library NITK | DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify