Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Anne, G."

Filter results by typing the first few letters
Now showing 1 - 20 of 31
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Combined effect of multidirectional forging and heat treatment on erosion and corrosion behaviour of the Mg-Zn-Mn alloys
    (Korean Society of Mechanical Engineers, 2024) Anne, G.; Hegde, A.; Kudva, S.A.; Sharma, P.; Kumar, P.; Matapati, M.; Ramesh, S.; Sharma, S.S.
    Multidirectional forging (MDF) was successfully applied to the Mg-4Zn-1Mn alloy for five passes at 300 °C. The grain size of 5 pass MDF processed samples reached 18 ± 3 µm from 256 ± 6 µm, and ?-Mg, MgZn2 and MnZn13 peaks were observed. Further MDF processed samples were solution treated (ST) at 300 °C for 2 h and quenched in SAE 20W40 oil and followed by artificial ageing (A) at 170 °C for four different timings including 1.5 h, 2 h, 2.5 h and 3.5 h respectively. The peak hardness of 219 Hv (5 pass MDF + H sample) was found in 2h artificial ageing which is 3.1 times higher compared to counterpart homogenised samples. Improvement of mechanical properties was attributed to smaller grain size and precipitation strengthening as well as distribution of the secondary phases. The combined effect of MDF and heat treatment was analysed using solid particle erosion tests at 30° and 90° impact angles using alumina. It was observed that higher impact angle (90°) had more erosion rate in all conditions and 5 pass MDF + H samples exhibited better erosion (0.0001 mg/g) due to higher hardness. On the other hand, polarisation and electrochemical impedance spectroscopy measurements were used to assess the alloys’ corrosion behaviour. The 3 pass MDF + H sample was found to have a corrosion rate of 0.0235 mm/y, which is two times lower than the counterpart 3 pass MDF processed samples and sixteen times lower than the homogenised sample (0.3838 mm/y). This was primarily due to the secondary phases’ better distribution and smaller grain size. © The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
  • No Thumbnail Available
    Item
    Development and characteristics of accumulative roll bonded Mg-Zn/Ce/Al hybrid composite
    (Elsevier Ltd, 2017) Anne, G.; Ramesh, M.R.; Shivananda Nayaka, H.; Arya, S.B.; Sahu, S.
    Accumulative roll bonding (ARB) process have been used develop Mg-2%Zn/Ce/Al hybrid composite and microstructure, mechanical and corrosion properties were investigated. The electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) revealed that the grains are significantly reduced and reaches up to 1 ?m in Mg-2%Zn layer and 1.8 ?m in Al layer having high angle misorientation of grain boundaries after subjected to 5-passes of the ARB process. The Al17Mg12, AlMg4Zn11 and Al11Ce3 intermetallic phases were observed through the XRD analysis. Mechanical properties of the hybrid composite improved with increase in the number of ARB passes which is attributed to work hardening, grain refinement and uniform distribution of Ce particles. Presence of Ce in the hybrid composite restricts the phenomenon of dynamic recrystallization and prevents the grain growth during ARB process. The corrosion rate of Mg-Zn/Ce/Al hybrid composite (0.72 mm/y) improved about 3.3 times as compared to that of Mg-2%Zn alloy (2.37 mm/y). © 2017 Elsevier B.V.
  • No Thumbnail Available
    Item
    Development and properties evaluation of Mg-6% Zn/Al multilayered composites processed by accumulative roll bonding
    (Cambridge University Press, 2017) Anne, G.; Ramesh, M.R.; Shivananda Nayaka, H.; Arya, S.B.; Sahu, S.
    Accumulative roll bonding (ARB) process was used to develop Mg-6% Zn/Al and Mg-6% Zn/anodized-Al multilayered composites. Microstructural characterization was done using scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron backscattered diffraction, and transmission electron microscopy. An average grain size measured in the roll-bonded layers of Al, anodized Al, and Mg-2% Zn was found to be 1.8 ?m, 1.6 ?m, and 0.6 ?m, respectively. Phases Al17Mg12, AlMg4Zn11, and Al2O3 after 5-pass of ARB were confirmed by X-ray diffraction analysis. The Mg-6% Zn/Al and Mg-6% Zn/anodized Al composites exhibited tensile strengths ?252 MPa and ?256 MPa, respectively, after a 5-pass ARB process. Hardness of the individual layers of composite increased linearly with an increase in the number of ARB passes. Fractographs of the multilayered composite illustrated the ductile failure in Al and anodized Al layers and transgranular brittle fracture in Mg-6% Zn layers. © Materials Research Society 2017.
  • No Thumbnail Available
    Item
    Development, Characterization, Mechanical and Corrosion Behaviour Investigation of Multi-direction Forged Mg–Zn Alloy
    (Springer International Publishing, 2019) Anne, G.; Ramesh, S.; Kumar, G.; Sahu, S.; Ramesh, M.R.; Shivananda Nayaka, H.; Arya, S.
    In the present study, homogenized Mg−4%Zn (wt%) alloy was exposed to multi-direction forging (MDF) at 280 °C up to 5 passes successfully. Microstructural evolution, mechanical properties and corrosion behavior of the MDF-processed Mg−4%Zn alloy was investigated using different characterization techniques. Five passes of MDF (cumulative strain, ΣΔε = 3.45) led to the formation of ultrafine grain structure (grain size ~2.3 μm) with high angle grain boundaries (HAGBs) and high dislocation density. Corresponding ultimate tensile strength (UTS) and microhardness were observed to be 228 MPa and 88 Hv. Potentiodynamic polarization test results exhibited higher corrosion resistance (0.38 mm/y) in comparison with that of homogenized condition (1.33 mm/y). © 2019, The Minerals, Metals & Materials Society.
  • No Thumbnail Available
    Item
    Development, Characterization, Mechanical and Corrosion Behaviour Investigation of Multi-direction Forged Mg�Zn Alloy
    (2019) Anne, G.; Ramesh, S.; Kumar, G.; Sahu, S.; Ramesh, M.R.; Shivananda, Nayaka, H.; Arya, S.
    In the present study, homogenized Mg?4%Zn (wt%) alloy was exposed to multi-direction forging (MDF) at 280 �C up to 5 passes successfully. Microstructural evolution, mechanical properties and corrosion behavior of the MDF-processed Mg?4%Zn alloy was investigated using different characterization techniques. Five passes of MDF (cumulative strain, ??? = 3.45) led to the formation of ultrafine grain structure (grain size ~2.3 ?m) with high angle grain boundaries (HAGBs) and high dislocation density. Corresponding ultimate tensile strength (UTS) and microhardness were observed to be 228 MPa and 88 Hv. Potentiodynamic polarization test results exhibited higher corrosion resistance (0.38 mm/y) in comparison with that of homogenized condition (1.33 mm/y). � 2019, The Minerals, Metals & Materials Society.
  • No Thumbnail Available
    Item
    Effect of addition of Ce and accumulative roll bonding on structure-property of the Mg-Ce-Al hybrid composite and its prediction and comparison using artificial neural network (ANN) approach
    (Institute of Physics, 2024) Anne, G.; Bhat, N.; Vishwanatha, H.M.; Ramesh, S.; Maruthi Prashanth, B.H.; Sharma, P.; Aditya Kudva, S.; Jagadeesh, C.; Nanjappa, Y.
    Light alloys play a crucial role in realizing the national strategy for energy conservation and emission reduction, as well as promoting the upgrading of manufacturing industries. Mg/Al composite laminates combine the corrosion resistance and ductility of aluminium alloy with the lightweight characteristics of magnesium alloy. The addition of Ce (rare earth elements) can improve the mechanical properties of magnesium via grain refinement and improve the ductility of the hybrid composites. In the present work, an investigation on addition of Ce into the Mg/Al matrix through Accumulative Roll Bonding (ARB) has been presented. The Mg/Ce/Al hybrid composite consists of Mg-4%Zn alloy and Al 1100 alloy with 0.2% Ce particles added between the dissimilar layers. The changes occurred in the evaluation of microstructure, corrosion and mechanical properties of the Mg/Ce/Al hybrid composite as a result of deformation process and also the addition of Ce have been explicated. The ARB parameters: temperature, rolling speed, percentage reduction, and aging time, have been studied. An increase of about 2.36 times in strength and hardness of the hybrid composite, has been reported. Further, the structure-property relations in the Mg/Ce/Al hybrid composites were aslo predict and compare using machine learning models: Decision Tree and Multi-Layer Perceptron (MLP) models. © 2024 The Author(s). Published by IOP Publishing Ltd.
  • No Thumbnail Available
    Item
    Effect of Equal Channel Angular Pressing on Properties Evaluation of Biodegradable Mg-Zn-Mn Alloy
    (Springer Science and Business Media Deutschland GmbH, 2021) Ramesh, S.; Kumar, G.; Jagadeesh, C.; Anne, G.; Shivananda Nayaka, H.
    Equal channel angular pressing (ECAP) was used to process Mg-4Zn-1Mn alloy at 300 °C using route Bc up to 4 pass with a cumulative strain of 3.2. Optical microscope (OM), microstructures results shows homogenized sample grain size was 260 µm, after 4 pass ECAP grain size was decreased to 6 µm. Electron back-scattered diffraction (EBSD) shows the misorientation angle converted from low-angle grain boundaries (LAGB) to high-angle grain boundaries (HAGB). Dislocation density and fine grains were observed from transmission electron microscope (TEM) images. Strength has been increased from 156 to 218 MPa and hardness increased to 68 Hv after 4 pass of ECAP. Fractography analysis revealed that dimple size decreases as ECAP passes increased. XRD analysis shows the peak broadening and intensity variation, because of grain refinement. The corrosion behavior of the homogenized and ECAP-processed samples were investigated by electrochemical tests using simulated body fluids (SBF) at 37 ± 1 °C. The lower corrosion resistance of ECAP-processed Mg-4Zn-1Mn alloy attributed to the strain-induced crystalline defects, subgrain boundaries and high-density dislocations. Enhanced strength and ductility combined with lower corrosion resistance of ECAP-processed Mg-4Zn-1Mn has greater potentials for biomedical implants. © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
  • No Thumbnail Available
    Item
    Effect of Rolling Reduction on Microstructure and Mechanical Properties Cu-3%Ti Alloy
    (Pleiades journals, 2019) Singh, P.; Ramesh, S.; Anne, G.; Shivananda Nayaka, H.
    Cu-3%Ti alloy is cold rolled with different reduction ratios and the microstructures and mechanical properties are compared with that of as-cast Cu-3%Ti alloy. Microstructure was analyzed using optical microscope and scanning electron microscope. Optical microscopy revealed significant grain refinement that occurred during the rolling process. Tensile test results indicate that the UTS is increased by a significant amount up to 80% rolling reduction. A significant amount of tensile strength increased up to 812 MPa is about 1.69 times that of the cast Cu-3%Ti alloy. Hardness of the rolled Cu-3%Ti increased as % reduction increased. Dimples were revealed on the fracture surface of the rolled Cu-3%Ti specimens indicating a ductile nature of the fracture. © 2019, Springer Nature Singapore Pte Ltd.
  • No Thumbnail Available
    Item
    Effects of combined multiaxial forging and rolling process on microstructure, mechanical properties and corrosion behavior of a Cu-Ti alloys
    (Institute of Physics Publishing helen.craven@iop.org, 2019) Ramesh, S.; Anne, G.; Shivananda Nayaka, H.; Sahu, S.; Arya, S.
    Combined multiaxial forging (MAF) and rolling was performed on Cu-3% Ti (wt%) alloy at room temperature with emphasis on microstructural evolution, improvement in mechanical properties, and corrosion resistance. Microstructural changes were confirmed from various characterization techniques, and co-related with mechanical properties. TEM analysis revealed high shear band density in the 3 pass MAF + 90% rolled sample appearing due to high strain. EBSD analysis revealed transformation to low angle grain boundaries from high angle grain boundaries. Maximum microhardness and UTS reached to 340 HV and 960 MPa, respectively in the processed samples. Significant grain refinement was observed in MAF processed Cu-3%Ti alloy, and after combined MAF + rolling, higher dislocation density and refinement of shear bands were observed. In addition, potentio-dynamic polarization test was used to study the corrosion behavior of the alloy. Scanning electron microscope (SEM) was used to analyze the corroded surface morphology. © 2019 IOP Publishing Ltd.
  • No Thumbnail Available
    Item
    Enhancing surface characteristics of Mg-Zn-Sr alloy through cryo-ball burnishing; modeling and experimentation
    (Korean Society of Mechanical Engineers, 2024) Kudva, S.A.; Anne, G.; Ramesh, S.; Sharma, P.; Jagadeesh, C.; Ritti, L.; Naik, G.M.; Divya Deepak, G.D.
    In this investigation, the impact of the cryo-ball burnishing process on both the mechanical and corrosion properties of the Mg-4Zn-1Sr alloy was systematically explored. To better understand the plastic deformation occurring in Mg-4Zn-1Sr during cryo-burnishing, a finite element analysis (FEA) model was developed. The microstructure of cryo-ball burnished samples underwent characterization through scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and surface properties were assessed using atomic force microscopy (AFM). Additionally, electrochemical impedance spectroscopy and potentiodynamic polarization tests were conducted in a simulated body fluid using an electrochemical workstation. Experimental findings revealed significant grain refinement and the presence of residual dislocations during the cryo-burnishing process, as evident in TEM analysis. XRD analysis indicated the presence of Mg, Mg17Sr2 and SrZn2 phases, with observable peak broadening in the cryo-burnished samples, attributed to structural refinement and lattice strain incorporation. Microhardness values increased with greater depth of press, with the DFN 1071 sample displaying a hardness of 80 ± 4 Hv (Ra = 1.853 µm), marking a 54 % improvement compared to the homogenized sample. The enhanced corrosion resistance of the Mg-4Zn-1Sr alloy due to cryo-burnishing is attributed to the combined effects of grain refinement, residual dislocations, and intermetallic phases. © The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
  • No Thumbnail Available
    Item
    Enhancing the functionality of biodegradable Mg–Zn–Mn alloys using poly(lactic) acid (PLA) coating for temporary implants
    (Springer, 2024) Kumar, P.; Anne, G.; Ramesh, M.R.; Doddamani, M.; Prabhu, A.
    Polylactic acid (PLA) was coated on biodegradable Mg–Zn–Mn alloys using a sol–gel coating technique for temporary implant applications. The presence of smooth, dense, crack-free PLA coating was evidenced using Fourier transform infrared spectroscopy (FTIR) and a scanning electronic microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDX) module. The strength of the bond between PLA and the Mg–Zn–Mn alloys was investigated as per ASTM D3359 and found to be 4B. The degradation behavior was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated body fluid (SBF) solution. The corrosion rate of the PLA–Mg–Zn–Mn sample was found to be 0.00363 mm/y, which is 73% better than the bare Mg–Zn–Mn sample (0.00493 mm/y). In addition, the results of the cytotoxicity assay indicated the cytocompatibility of the implant material on MG-63 osteoblast-like cells, confirming its safety on the bone cells. The efficacy of the use of PLA coating on the biodegradable Mg–Zn–Mn is due to the synergistic effect of both physical and chemical interactions between the PLA layer and the substrate. © American Coatings Association 2024.
  • No Thumbnail Available
    Item
    Enhancing wear resistance of AZ61 alloy through friction stir processing: experimental study and prediction model
    (Institute of Physics, 2024) Anne, G.; Ramesh, S.; Sharma, P.; Maruthi Prashanth, B.H.; Aditya Kudva, S.; Kumar, P.; Sahu, S.; Bhat, N.
    In this study, friction stir processing (FSP) is proposed for the treatment of AZ61 alloy, and an artificial neural network is built to predict and compare the experimental wear results. The effects of different processing parameters, including spindle speed (800-1200 rpm), traveling speed (5-15 mm min−1), and depth of press (0.8-1.2 mm) on the microstructural evolution, mechanical properties, and wear behavior are investigated. Microstructural analysis reveals a grain size of 14 ± 2 μm for the FSP1 sample, with observed shifting of x-ray diffraction (XRD) peaks, indicative of texture development. Increasing spindle and traveling speeds increase the surface roughness, as observed by average roughness (Ra) values of 68.4 nm for a rotational speed of 800 rpm, traveling speed of 5 mm min−1, and shoulder depth of 0.8 mm (FSP1) and 116.3 nm for rotational speed of 1200 rpm, traveling speed of 15 mm min−1, and shoulder depth of 1 mm (FSP9). Microhardness values increase to 113.36 Hv for FSP1 and 79. 51 Hv for FSP9 compared to 65.92 Hv for the base material (BM) sample. The decrement in hardness from FSP1 to FSP9 can be attributed to increased heat input, resulting in coarse microstructure. Wear results show that FSP1 exhibits the lowest weight loss (0.003 g) and coefficient of friction (COF) (0.28) compared to other FSP conditions and BM samples (weight loss of 0.022 g and COF of 0.68). This work demonstrates the efficacy of friction stir processing in enhancing the wear resistance of magnesium alloys. © 2024 The Author(s). Published by IOP Publishing Ltd.
  • No Thumbnail Available
    Item
    Examining the Influence of StackinSequence on the Mechanical Properties of Hybrid Abaca-Jute Vinyl Ester Composites
    (Springer Nature, 2024) Ramesh, S.; Maruthi Prashanth, B.H.; Anne, G.; Naik, G.M.; Reddy, R.; Jagadeesh, C.; Sharma, P.; Prashanth Pai, M.
    This research looked on the impacts of layer arrange-ment on inter-laminar shear strength (ILSS), tensile, flexural, and impact capabilities of hybrid composite developed from 25% abaca and 25% jute fabrics reinforced 50% vinyl ester. Furthermore, the samples frac-tured under the tensile load were examined using SEM images. Utilizing a hot press process, these hybrid laminates were fabricated and sample preparation and testing were done as per ASTM criteria. The findings demonstrate that among Abaca-Jute-Abaca-Jute (AJAJ), Abaca-Jute-Abaca (AJJA), and Jute-Abaca-Abaca-Jute (JAAJ) vinyl ester composites, the Abaca-Jute-Jute-Abaca (AJJA) composites showed higher tensile modulus and strength by 23–33%, the flexural modulus and strength by 3–22%, the impact behavior, and ILSS strength by 11–33%. These benefits could be attributed to the presence of abaca fiber on the exterior of lami-nates. Fractography studies revealed that the fiber-resin bonding was superior. AJJA composites were found to be stronger than commonly used plastics in automobile interiors, making them a promising alternative. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
  • No Thumbnail Available
    Item
    High-pressure torsion of biodegradable Mg?Zn?Mn alloy and investigate mechanical and corrosion behaviour
    (Nature Research, 2025) Kumar, P.; Anne, G.; Ramesh, S.; Kudva, S.A.; Ramesh, M.R.; Doddamani, M.; Prabhu, A.; Sahu, S.
    Considering their biodegradability in physiological environments and similar elastic modulus to natural bone, magnesium alloys have generated a lot of interest as biodegradable implant materials. Their poor corrosion resistance is primarily a result of the inhomogeneous distribution of their second phase, which limits their clinical application. High pressure torsion (HPT) one of the severe plastic deformation techniques which provides an opportunity to process materials with low formability such as magnesium at room temperature. The present study HPT is conducted for Mg-Zn-Mn alloy up to ten revolutions at room temperature. Optical, scanning, and transmission electron microscopes were used to examine the microstructures of base material (BM) and ten revolution HPT samples. Significant microhardness improvement was observed in HPT N10 samples (222 Hv) as compared to BM samples (68 Hv). It was determined that the improvement in microhardness was primarily due to dislocation strengthening, fine grain strengthening, and second phase strengthening. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) were used in a simulated body fluid (SBF) solution to assess the corrosion behaviour. When compared to the BM sample (0.0243 mm/y), the corrosion resistance of the HPT N10 sample (0.0012 mm/y) increased significantly. This was mostly due to the smaller grain size and uniform dispersion of the secondary phases, which result in a uniform corrosion. Further, obtained data from the cytotoxicity assay carried out using the MTT method indicated the compatibility of the Mg-Zn-Mn alloy on MG-63 osteoblast-like cells, further substantiating its safety on the bone cells. © The Author(s) 2025.
  • No Thumbnail Available
    Item
    Impact of ply stacking sequence on the mechanical response of hybrid Jute-Banana fiber phenoplast composites
    (Institute of Physics, 2024) Maruthi Prashanth, B.H.; Ramesh, S.; Shivakumar Gouda, P.S.S.; Naik, G.M.; Sharma, P.; Jagadeesh, C.; Mahantesh, M.M.; Anne, G.
    Natural fiber composites are increasingly gaining popularity as a cost-effective and environmentally friendly alternative to synthetic fibers. Incorporating a variety of fibers enhances mechanical properties. The arrangement of fibers plays a crucial role in determining the mechanical characteristics of laminate composites. Therefore, the primary objective of this study is to investigate how the stacking order of jute (J) and banana (B) fibers affects the mechanical behaviour of composites made from phenolic resins. Four different fiber mat stacking sequences (J/B/B/J, B/J/J/B, J/B/J/B, and J/J/B/B) were used for developing the eco-fiber composites using the heat-press technique. Several mechanical parameters were assessed, including tensile strength, flexural strength, impact strength, and inter-laminar shear strength (ILSS). The experimental results indicated that the JBBJ composite exhibits superior tensile strength (46.65 MPa) and modulus (993 MPa) compared to the other composites due to the presence of high-strength jute fibers on the surface. Additionally, the flexural strength of the JBBJ composite (87.24 MPa) was found to be noteworthy. It was observed that the impact strength of jute fibers surpasses that of banana fibers. Consequently, the JBBJ composite demonstrates higher values for energy absorption (0.482 J) and impact strength (120 J m−1) compared to the other composites tested. Moreover, the JBBJ composite displays higher inter-laminar shear strength and hardness values compared to BJJB, JBJB, and JJBB by 30%, 35%, and 43%, respectively. Scanning electron microscope microphotographs reveal strong correlational fracture failure mechanisms, indicative of improved mechanical properties in the JBBJ composite. Based on the experimental results, it is evident that the JBBJ composite can be utilized in lightweight applications. © 2024 The Author(s). Published by IOP Publishing Ltd.
  • No Thumbnail Available
    Item
    Influence of Ball Burnishing Process on Equal Channel Angular Pressed Mg-Zn-Si Alloy on the Evolution of Microstructure and Corrosion Properties
    (Springer Science and Business Media B.V., 2021) Ramesh, S.; Anne, G.; Kumar, G.; Jagadeesh, C.; Shivananda Nayaka, H.
    In the present study, Mg-4Zn-1Si alloy was subjected to equal channel angular pressing (ECAP) up to 4 passes at 300 °C, followed by ball burnishing using 0.3 mm depth of press, 300 mm/min feed and 1 pass successfully. The effect of ECAP and ECAP + ball burnishing process on microstructure, mechanical properties (tensile and hardness) and corrosion behavior was systematically investigated. After 4 pass ECAP, initial coarse grains (210 ?m) were refined and average grain size is 6 ?m and after ball burnishing, the grain size is found to be 3.3 ?m. Microstructure evolution is discussed using optical images, scanning electron microscope images and transmission electron microscope images. For ECAP samples, maximum strength and hardness was recorded at 3 pass. Both strength and hardness decreased for 4 pass ECAP processed samples, even though grain size decreased, this is because of texture modification in the material. ECAP 4 pass + ball burnished samples exhibited 48.5% enhancement of microhardness as compared to 4 pass ECAP samples. Corrosion resistance of the samples decreased with increase in the number of ECAP passes, this is due to strain-induced grain refinement with more crystalline defects in samples. Combined process of ECAP and ball burnishing effectively reduces the Icorr and this consequently reduces corrosion rate of the Mg–4Zn-1Si alloy. © 2020, Springer Nature B.V.
  • No Thumbnail Available
    Item
    Influence of cold rolling process on microstructure and mechanical properties of Cu-1.5%Ti alloy
    (2018) Ramesh, S.; Nayaka, H.S.; Anne, G.; Gopi, K.R.
    The effects of cold rolling on the microstructure evolution and mechanical properties of Cu-1.5%Ti alloy were investigated. The results showed that the tensile strength of the Cu-1.5%Ti alloy increased with an increase of rolling deformation at room temperature. Significant grain refinement took place during rolling process revealed in optical microstructure and transmission electron microscope analysis. XRD patterns revealed peaks indexed to Cu, Cu3-Ti2 and Cu4-Ti3 after 8-pass rolling process. Microhardness of the rolled Cu-1.5%Ti alloy layers increased incessantly with increase in the number of rolling passes. Tensile strength increased up to 294 MPa which was about 1.54 times higher than that of the cast Cu-1.5%Ti alloy. Fracture surfaces of the rolled Cu-1.5%Ti alloy revealed the dimples in the structure, which is an indication of ductile fracture. � 2018 Author(s).
  • No Thumbnail Available
    Item
    Influence of cold rolling process on microstructure and mechanical properties of Cu-1.5%Ti alloy
    (American Institute of Physics Inc. subs@aip.org, 2018) Ramesh, S.; Shivananda Nayaka, H.S.; Anne, G.; Gopi, K.R.
    The effects of cold rolling on the microstructure evolution and mechanical properties of Cu-1.5%Ti alloy were investigated. The results showed that the tensile strength of the Cu-1.5%Ti alloy increased with an increase of rolling deformation at room temperature. Significant grain refinement took place during rolling process revealed in optical microstructure and transmission electron microscope analysis. XRD patterns revealed peaks indexed to Cu, Cu3-Ti2 and Cu4-Ti3 after 8-pass rolling process. Microhardness of the rolled Cu-1.5%Ti alloy layers increased incessantly with increase in the number of rolling passes. Tensile strength increased up to 294 MPa which was about 1.54 times higher than that of the cast Cu-1.5%Ti alloy. Fracture surfaces of the rolled Cu-1.5%Ti alloy revealed the dimples in the structure, which is an indication of ductile fracture. © 2018 Author(s).
  • No Thumbnail Available
    Item
    Influence of Multidirectional Forging on Microstructural, Mechanical, and Corrosion Behavior of Mg-Zn Alloy
    (Springer New York LLC barbara.b.bertram@gsk.com, 2019) Ramesh, S.; Anne, G.; Shivananda Nayaka, H.S.; Sahu, S.; Ramesh, M.R.
    Multidirectional forging (MDF) was applied to Mg-6%Zn alloy up to 5 passes successfully at 280 °C. MDF-processed materials were characterized using optical microscope, scanning electron microscope, electron backscatter diffraction, transmission electron microscope, and x-ray diffraction. Obtained results showed a significant reduction in grain size (up to 3.8 ?m) having a large fraction of high-angle grain boundaries after 5 passes of MDF process. Maximum tensile strength of 230 MPa was achieved for 5-pass MDF-processed Mg-6%Zn alloy which is about ~ 2.0 times higher in comparison with that of homogenized alloy (117 MPa) and was attributed to higher dislocations density and grain refinement. Corrosion behavior of the alloy was investigated in 0.1 M NaCl solution using potentiodynamic polarization test, electrochemical impedance spectra analysis, and immersion tests. It was found that the corrosion rate of 5-pass MDF sample improved (0.34 mm/year) ~2.5 times in comparison with that of homogenized Mg-6%Zn alloy (0.86 mm/year) due to fine grain structure, which creates more grain boundaries that act as a corrosion barrier. © 2019, ASM International.
  • No Thumbnail Available
    Item
    Investigation of dry sliding wear properties of multi-directional forged Mg–Zn alloys
    (National Engg. Reaserch Center for Magnesium Alloys zhangdingfei@cqu.edu.cn, 2019) Ramesh, S.; Anne, G.; Shivananda Nayaka, H.S.; Sahu, S.; Ramesh, M.R.
    Effect of multi-directional forging (MDF) on wear properties of Mg–Zn alloys (with 2, 4, and 6 wt% Zn) is investigated. Dry sliding wear test was performed using pin on disk machine on MDF processed and homogenized samples. Wear behavior of samples was analyzed at loads of 10 N and 20 N, with sliding distances of 2000 m and 4000 m, at a sliding velocity of 3 m/s. Microstructures of worn samples were observed under scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD) and the results were analyzed. Mechanical properties were evaluated using microhardness test. After 5 passes of MDF, the average grain size was found to be 30 ± 4 µm, 22 ± 3 µm, and 18 ± 3 µm, in Mg–2%Zn, Mg–4%Zn, and Mg–6%Zn alloys, respectively, with significant improvement in hardness in all cases. Wear resistance was improved after MDF processing, as well as, with increment in Zn content in Mg alloy. However, it decreased when the load and the sliding distance increased. Worn surface exhibited ploughing, delamination, plastic deformation, and wear debris along sliding direction, and abrasive wear was found to be the main mechanism. © 2019
  • «
  • 1 (current)
  • 2
  • »

Maintained by Central Library NITK | DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify