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Abstract

The field of rational numbers Q is neither complete nor algebraically closed. There is

no finite extension of Q which is algebraically closed. Completions of Q with respect to

p-adic absolute values are the fields of p-adic numbers Qp. The thesis consists of two

parts: p-adic dynamics and real quadratic fields. The first part deals with the p-adic

discrete dynamical systems. Two concepts of classical discrete dynamical systems are

studied in the context of p-adic fields. Firstly, the notion of topological conjugacy for

the p-adic analog of the logistic map and the quadratic map is studied. Secondly, the

notion of p-adic backward dynamics for the same maps have also been studied.

In the second part the notion of Mersenne primes has been extended to real quadratic

fields with class number 1. Computational results are given. The field Q(
√

2) is studied

in detail with a focus on representing Mersenne primes in the form x2 + 7y2. It is

also proved that x is divisible by 8 and y ≡ ±3 (mod 8) generalizing the result of

F. Lemmermeyer, first proved by H. W. Lenstra and P. Stevenhagen using Artin’s

reciprocity law.
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God made integers, all else is the work of man.

Leopold Kronecker



Chapter 1

Introduction

This thesis consists of two parts: p-adic dynamics and real quadratic fields. It is

natural to have accumulated truncation errors or round-off errors in a dynamical

system even with a small perturbation. These are unavoidable since even with simple

repetitive operations, the number of digits of the result can increase so much that

the result cannot be held fully in the registers available in the computer. Such errors

accumulate one after another from iteration to iteration originating fresh errors. These

difficulties motivated to look for an alternate number system which possesses the best

features as well as the advantages of both the p-ary and residue number system. Such

a number system is the p-adic number system, Qp, discovered by Kurt Hensel in the

late nineteenth century in order to study the properties of algebraic numbers.

Hensel’s original description of the p-adic numbers involved an analogy between

the ring of integers and the ring of polynomials over the complex numbers, the crux

of which was the development of a representation of rational numbers analogous to

that of Laurent expansions of rational functions namely, the p-adic expansion. In

other words, Hensel sought an analogy between the theory of analytic functions and

the rational numbers. Instead of constructing a Taylor series centered at a particular

point to obtain local information about an analytic function at the particular point

Hensel wrote rational numbers as a sum of powers of a prime number to obtain local

information at the prime. This idea was motivated by the existence of expansions of
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rational numbers with respect to a p-scale:

x =
k∑

n=−∞

αnp
n, αn = 0, ..., p− 1.

Such manipulations with rational numbers and series generated the idea that there

exists some algebraic structure similar to the system of real numbers R. Thus each

Qp has the structure of a number field. In fact, the fields of p-adic numbers Qp were

the first examples of infinite fields that differ from Q, R, C and corresponding fields

of rational functions.

The p-adic numbers have played a fundamental role in number theory and algebra,

and are now finding wider applications in science. In particular, p-adic numbers are

useful in investigations of some number-theoretical problems in the field of rational

numbers Q. A well-known fact in number theory is that the only non-Archimedean

valuations on Q up to exponentiation are the trivial valuation | · |1 such that |x|1 = 1

for nonzero x, and the p-adic valuation | · |p defined by |pkx|p = p−k where p divides

neither the numerator nor the denominator of x.

Real numbers allow only complex numbers as an algebraic extension. For p-adic

numbers algebraic extensions of arbitrary dimension are possible. There is no suitable

notion of measure on the p-adic analogue of C because it is not locally compact. The

way around this is to use the reduction homomorphism to translate the problem into

one of dynamics over Fp.

In Chapter 2 some definitions and background to p-adic numbers are given.

Chapter 3 deals with the study of one-dimensional dynamical systems as a back-

ground to the next chapter. Iterating one-dimensional maps has a very long history.

After all, to construct an accurate calendar, the Babylonians had to consider (in

modern terminology) a rotation of the circle and give a precise estimate for its angle

α of rotation based on a piece of its orbit. For this they and later the Greeks

considered the line (t, tα) in the plane and developed a continued fraction algorithm
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to estimate its slope α. Ever since, continued fractions have played an important role

in mathematics and in particular in number theory.

Dynamical systems occur in all branches of science from the differential equations of

classical mechanics to physics to the difference equations of mathematical economics

and biology. Dynamical systems theory is a classical branch of mathematics which

began with Newton around 1665. It provides mathematical models for systems which

evolve in time according to a rule, originally expressed in analytical form as a system

of ordinary differential equations. These models are called continuous dynamical

systems. They are also called flows, as the points of the system evolve by flowing

along continuous curves.

In the 1880s, Poincaré studied continuous dynamical systems in connection with

a prize competition on the stability of the solar system. He found it convenient to

replace the continuous flow of time with a discrete analogue, in which time increases

in regular, saltatory jumps. These systems are now called discrete dynamical systems.

So, for over a century, dynamical systems have come in two flavors: continuous and

discrete. Discrete dynamical systems are usually expressed as the iteration of a map

(also called an endomorphism) of a space into itself. In these systems, points of the

system jump along dotted lines with a regular rhythm.

The mathematical tools that are used in this theory come from different and beautiful

branches of mathematics: number theory, topology, ergodic theory, complex analysis,

real analysis, general dynamical systems and foliation theory, to name a few.

In chapters 4 and 5 two instances of dynamical systems are studied over p-adic

integers, viz., topological conjugacy of quadratic map and backward dynamics of

quadratic map with a special focus on the p-adic analog of the standard logistic map.

Hensel’s Lemma aims at providing solutions to these problems.

The application of completion of Q with respect to p-adic metric is considered in

the previous chapters. The next part of the thesis consists of two chapters with some
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definitions of Algebraic number fields and a special focus on real quadratic fields

in the last chapter. The fundamental theorem of algebra states that the algebraic

closure of the field of real numbers is the field of complex numbers. The algebraic

closure of Q, i.e. the field of roots of rational polynomials, is the algebraic numbers.

Kummer (1810− 1893), Kronecker(1823− 1891) and Dedekind (1831− 1916) may be

considered to be the inventors of modern algebraic number theory. The subject arose

basically from the need to solve one particular problem in number theory - Fermat’s

last theorem. Historically, the desire to generalize Gauss’s quadratic reciprocity law,

use of arithmetic of cyclotomic fields led to the invention of Algebraic Number Theory.

In the last chapter, the concept of Mersenne primes is studied in real quadratic fields

with class number 1. Computational results are given. The field Q(
√

2) is studied

in detail with a focus on representing Mersenne primes in the form x2 + 7y2. It is

also proved that x is divisible by 8 and y ≡ ±3 (mod 8) generalizing the result of

F. Lemmermeyer, first proved by H. W. Lenstra and P. Stevenhagen using Artin’s

reciprocity law.
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Chapter 2

p-adic Numbers

The field of rational numbers is of central importance in physics and mathematics.

It is well known that all results of measurements belong to Q, i.e., the irrational

numbers cannot be “measured”. From a mathematical point of view Q is the simplest

infinite number field. Completion of Q with respect to the usual absolute value gives

the field of real numbers R. Algebraic closure of R leads to the field of complex

numbers C. Although experimental results are given in Q, theoretical models are

usually constructed over R or C. However, it is interesting that in addition to the

standard absolute value there exist p-adic norms (valuations) on Q.

An absolute value on a field F is a group homomorphism:

| · | : F∗ → R>0

where, R>0 is the set of positive reals, that satisfies the following conditions:

1. |xy| = |x||y| ∀x, y ∈ F

2. |x+ y| ≤ |x|+ |y| ∀x, y ∈ F (the triangle inequality)

An absolute value on F is called ultrametric or non-Archimedean if it satisfies

the additional condition,

3. |x+ y| ≤Max(|x|, |y|) (strong triangle inequality) otherwise the the absolute

value is Archimedean.
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| · | is extended to F by setting |0| = 0.

Condition 3 implies condition 2, the triangle inequality, since Max(|x|, |y|) does not

exceed the sum |x|+ |y|.

The general notion of absolute value on a field was introduced in 1913 by J. Kürschak.

Around 1917, A. Ostrowski described absolute values on some classical fields, including

the field of rationals. The whole point of an absolute value is that it provides the

notion of size, i.e., it can be used to measure distances between numbers, that is, to

put a metric on a given field, to define the notion of open and closed sets, and in

general to investigate the topology of a given field.

The usual absolute value | · | on Q is defined by:

x =

{
x if x ≥ 0

−x if x < 0

It is actually the usual absolute value on the field R of real numbers, applied to Q
via the inclusion Q ↪→ R. It is easy to see that this absolute value is Archimedean,

usually called the absolute value at infinity and is denoted by | · |∞. The only two

Archimedean complete fields are (R, | · |∞) and (C, | · |∞) and while (Q, | · |∞) is not

complete, (R, | · |∞) is its completion. More generally, an ordered field F is called

Archimedean or, the ordering of a field is called Archimedean if the following holds:

given x, y ∈ F, x 6= 0, there exists a positive integer n such that |nx| > |y|. This

property holds for the usual absolute value | · |∞ on Q and R. The induced metric

d(x, y) = |x− y|, is the ordinary Euclidean distance on the number line. The field of

real numbers R is the completion of Q with respect to this absolute value. It is easy

to see that the Archimedean property is equivalent to the assertion that

sup{|n| : n ∈ Z} = +∞.

Definition 2.0.1. An absolute value is non-Archimedean if and only if

sup{|n| : n ∈ Z} = 1

Lemma 2.0.2. Let F be a field and let |.| be a non-Archimedean absolute value on F.

If x, y ∈ F and |x| 6= |y|, then |x+ y| = Max{|x|, |y|}.
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Proof. Let |x| > |y|. Then |x+ y| ≤ |x| = Max{|x|, |y|}.
On the other hand, x = (x+ y)− y, so that

|x| ≤ max{|x+ y|, |y|},

since |x| > |y|, this inequality can hold only if max{|x+ y|, |y|} = |x+ y|.
This gives the reverse inequality |x| ≤ |x+ y| and from this it can be concluded that

|x| = |x+ y|.

Thus, in an ultrametric space all triangles are isosceles.

Corollary 2.0.3. If the elements a, x of a non-Archimedean field F satisfy the

inequality |x− a| < |a|, then |x| = |a|

Proof. Immediate from the Lemma 2.0.2

Remark 2.0.4. The corollary 2.0.3 can be restated in the following way:

for a, b in a non-Archimedean field F, |a| > |b| =⇒ |a+ b| = |a|.

Proposition 2.0.5. Let K be a field with non-Archimedean absolute value.

i) If b ∈ B(a, r), then B(a, r) = B(b, r); in other words, every point that is contained

in an open ball is a center of that ball.

ii) If b ∈ B̄(a, r), then B̄(a, r) = B̄(b, r); in otherwords, every point that is contained

in a closed ball is a center of that ball.

iii) The set B(a, r) is both open and closed.

iv) If a, b ∈ K and r, s ∈ R×+, then B(a, r)∩B(b, r) 6= φ if and only if B(a, r) ⊂ B(b, s)

or B(a, r) ⊃ B(b, s); in other words, in other words any two open balls are either

disjoint or contained in one another.

Similar result holds for closed balls

Proof. i) By definition, b ∈ B(a, r) if and only if |b − a| < r. Choose x for which

|x− a| < r. Then by non-Archimedean property

|x− b| ≤Max{|x− a|, |b− a|} < r,

so that x ∈ B(b, r). This shows that B(a, r) ⊂ B(b, r). The other inclusion is obtained

by switching a to b, so that the two balls are equal.
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ii) is immediate from i).

iii) The open ball is always an open set in any metric space. Consider an x in the

boundary of B(a, r); this means that any open ball centered in x must contain points

that are in B(a, r). Choose a number s ≤ r, look at the open ball B(x, s) with center

x and radius s. Now, since x is a boundary point, B(a, r)∩B(x, s) 6= φ, so that there

exists an element

y ∈ B(a, r) ∩B(x, s).

This means that |y − a| < r and |y − x| < s ≤ r. Applying the non-Archimedean

inequality,

|x− a| ≤Max{|x− y|, |y − a|} < max{s, r} ≤ r,

so that x ∈ B(a, r). This shows that any boundary point of B(a, r) belongs to B(a, r)

which means that, B(a, r) is a closed set.

iv) Let r ≤ s. If the intersection is not empty, there exists a c ∈ B(a, r) ∩B(b, s). It

is immediate from i) that B(a, r) = B(c, r) and B(b, s) = B(c, s). Hence

B(a, r) = B(c, r) ⊂ B(c, s) = B(b, s)

as claimed.

Thus in view of Proposition 2.0.5, the following fact holds:

An ultrametric field is totally disconnected, since any point has a basis of open-closed

neighborhoods. More precisely, any closed ball is open. Moreover, any triangle is

isosceles. Also, in non-Archimedean geometry, a center of a disc is nothing but a point

which belongs to the disc. The image of Qp\{0} under the p-adic norm is equal to

a discrete subset of R, namely {pn : n ∈ Z}. Therefore the closed and open ball of

radius greater than zero are equivalent, i.e., Br(y) = B̄r+ε(y) for all suffiently small ε

greater than zero.
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2.1 Discrete Valuation Fields

Definition 2.1.1. A valued field is a field K together with a surjective homomorphism

v : K∗ → Γ

from the multiplicative group of K to an ordered abelian group Γ satisfying the

following:

� v(xy) = v(x) + v(y)

� v(x+ y) ≥ inf{v(x), v(y)} holds whenever x+ y 6= 0.

� v is non-trivial, that is, there exists x ∈ K∗ with v(x) 6= 0

v can be extended to K by letting v(0) = +∞.

A valuation determines a non-trivial non-Archimedean absolute value and vice-

versa. The image v(K∗) is an additive subgroup of Γ, the value group of v. If

v(K∗) = {0}, then v is called the trivial valuation. Valuations v and cv, for c > 0 a

real constant, are equivalent.

A valuation v on K is said to be discrete if the totally ordered group v(K∗) is isomorphic

to the naturally ordered group Z. If v(K∗) = Z then v is called a normalised discete

valuation.

Relations between non-Archimedean absolute values and valuations:

The following theorem provides a relation between the non-Archimedean absolute

values and the valuations on K.

Theorem 2.1.2. Let | · | be a non-Archimedean absolute value on K and s ∈ R, s > 0,

then the function

vs : K→ R ∪ {∞}

x→

{
−s log|x| if x 6= 0

∞ if x = 0
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is a valuation on K. Furthermore, if s, s′ > 0 and s 6= s′, vs is equivalent to vs′ .

Conversely, if v is a valuation on K and q ∈ R, q > 1, the function

| · |q : K→ R

x→

{
q−v(x) if x 6= 0

0 if x = 0

Proof. It is easy to check that vs is a valuation on K. For all 0 6= x ∈ K,

vs(x) = −s log|x| =
(
s
s′

)
(−s′ log|x|) = s

s′
v′s(x)

Thus vs and vs′ are equivalent.

Conversely, | · |q satisfies axioms of non-Archimedean absolute value on K.
Set r := log q

log q′
. For all 0 6= x ∈ K,

|x|q = q−v(x) = q′−rv(x) = |x|rq′

Consequently | · |q and | · |q′ are equivalent.

Algebraic properties of valuation

Let v : K∗ → R be a valuation corresponding to the absolute value | · | : F∗ → R>0.

Then

O = Ov = OK = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x| ≤ 1}

is a ring called the valuation ring of v. K is its field of fractions, and

x ∈ K \ O =⇒ 1

x
∈ O

The set of units in O is

O× = {x ∈ K : v(x) = 0} = {x ∈ K : |x| = 1}

and

M := O \ O× = {x ∈ K : v(x) > 0} = {x ∈ K : |x| < 1} = {x ∈ O : x−1 /∈ O}

is an ideal in O. Since O = O× ∪M,M is a unique maximal ideal. Hence O is a

local ring. Also, k = O/M is a field, called the residue field of v or of K.
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The elements with valuation 0 are exactly the invertible elements of R. They

are called the units of R. A valuation ring O in K with residue field k is said to

be of equal characteristic if char(K) = char(k). Otherwise it is said to be of mixed

characteristic. In this case necessarily char(K) = 0 and char(k) = p > 0.

Suppose v : K � Z is normalised discrete. Then π ∈M with v(π) = 1 is called a

uniformiser. Then every x ∈ K∗ can be written uniquely as

x = uπn

for a unit u ∈ O× and n ∈ Z. Every x ∈ O can be written uniquely as

x = uπn

for a unit u ∈ O× and n ∈ Z≥0. Every x ∈M can be written uniquely as

x = uπn

for a unit u ∈ O× and n ≥ 1, in particular M = (π). Moreover every ideal I in O is

principal,

O ⊃ I 6= (0) =⇒ I = (πn)

Proposition 2.1.3. Let K be a field with a discrete valuation. Then the set R of

x ∈ K such that v(x) ≥ 0 is a principal domain with a unique non-zero maximal ideal

M. Such a ring is called a discrete valuation ring. In particular R is a local ring (i.e

with a unique non-zero prime ideal).

Proof. Let π be an element such that v(π) = 1. Every x ∈ R can be written in the

form x = πnu with n = v(x) and v(u) = 0 . Now v(u) = 0 implies u invertible

(because v( 1
u
) = 0 too). So every non-zero ideal of R is of the form πnR with n ≥ 0

which shows that R is indeed a discrete valuation ring.

Reciprocally if R is a discrete valuation ring with prime ideal (π), it is easy to see

that every non zero element x of the field of fractions K can be written in in the form

x = πnu with u invertible and n ∈ Z unique.
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Examples of valuation and valued fields

Example 2.1.4. Any fieldK with the trivial valuation defined by v(x) = 0 ∀x ∈ K

Example 2.1.5. The field M of meromorphic functions on the plane with v(f) :=

the order of vanishing of f at zero.

Example 2.1.6. For any field k the field of Laurent series over k, k((t)), is a valued

field via

v(f) = N ⇔ f =
∑
n≥N

ant
n

with aN 6= 0

Example 2.1.7. For a prime p and and a non-zero integer m let k = vp(m) be the

maximal integer such that pk divides m. The function vp can be extended to the field

of rational numbers as follows: if x = a
b
∈ Q×, then

vp(x) = vp(a)− vp(b); vp(0) =∞

The p-adic valuation vp is a discrete valuation with the ring of integers as Z. Then

O =

{
x

y
: (y, p) = 1

}

M =

{
x

y
: (y, p) = 1, p|x

}
= (p)O

O/M = k ∼= Fp,
x

y
→ x mod p

y mod p

Theorem 2.1.8. 1. Suppose v : K∗ � Z is a valuation. Then Ov is a DVR.

2. If R is a DVR then there exists a unique valuation v on its field of fractions K
such that R = Ov.

Proof. 1. O ⊂ K is a subring, hence an integral domain. It is clear from proposition

2.1.3 that, O is a local ring and a PID. π−1 ∈ K \ O, so O is not a field.

2. Let R be a DVR. Then R is a local ring so has a unique maximal ideal M, and

R is a PID so M = (π) for some π ∈ R. Since R is a PID, R is a UFD. If π′
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is another irreducible element then (π′) is maximal, hence (π) = (π′) so (π′)

associate to (π). As R is a UFD, every element is uniquely written in the form

uπn, u ∈ R is a unit. A function v on R can be defined by letting v(uπn) = n,

v(x
y
) = v(x)− v(y), which is clearly a valuation.

The completion of a field K with respect to a discrete valuation v is a field Kv

in which the elements can be easily described in terms of a uniformizing parameter.

(i.e.,Kv is complete in the v-adic topology.) In addition, Kv is a topological space

where the topology is defined by the metric dv.

For any field F there is a trivial absolute value on F defined by

|f |triv =

{
1 if f 6= 0

0 if f = 0

2.2 p-adic absolute value

Definition 2.2.1. For any x ∈ Q, the p-adic absolute value of x is defined by

|x|p = p−vp(x), if x 6= 0

with |0|p = 0

Theorem 2.2.2. (Ostrowski)Every nontrivial absolute value on Q is either equiva-

lent to the real absolute value or to one of the p-adic absolute values.

Lemma 2.2.3. | · |p is a non-Archimedean absolute value on Q.

Proof. Properties (1) and (2) are easy to check.

If x = 0 or y = 0, or if x+ y = 0, Property (3) is trivial.

Let x, y, x + y 6= 0 and x = a
b

and y = c
d

be written in their lowest terms. Then

x+ y = ad+bc
bd

, and vp(x+ y) = vp(ad+ bc)− vpb− vpd. Hence

vp(x+ y) ≥ min{vp(ad), vp(bc)− vp(b)− vp(d)}
= min {vp(a) + vp(d), vp(b) + vp(c)− vp(b)− vp(d)}

= min {vp(a)− vp(b), vp(c)− vp(d)}
= min{vp(x), vp(y)}

13



Therefore |x+y|p = p−vp(x+y) ≤Max{p−vp(x), p−vp(y)} = Max{|x|p, |y|p} ≤ |x|p+|y|p.
Thus | · |p is a non-Archimedean absolute value on Q.

Definition 2.2.4. Let (K, | · |) be any valued field. The distance d(x, y) between any

two numbers x, y ∈ K is given by

d(x, y) = |x− y|

Then K is a metric space with the metric d(x, y) = |x− y|.

Any field with an absolute value | · | can be made in to a metric space by defining

d(x, y) = |x − y|. The metric induced by the non-Archimedean absolute value is

ultra-metric. Then dp(x, y) = |x − y|p, the p-adic distance between x and y defines

a metric on Q. Instead of the triangle inequality for the usual metric it satisfies

the strong triangle inequality dp(x, y) ≤ Max{dp(x, y), dp(y, z)}, for any x, y, z ∈ Q.

The corresponding metric spaces are ultra-metric spaces. As a consequence (in stark

contrast to the Euclidean norm), the p-adic norm does not permit accumulation of

errors in the following sense. If each of k elements {x1, x2, ..., xk}have p adic norm

atmost ε, then |x1 + x2 + ...+ xk|p ≤ ε as well. This property justifies extensive use of

modular arithmetic (p-adic estimation) in p-adic calculation.

The topological completion of K with respect to | · | can be made in to a field,

called the completion K̂ of K with respect to | · |. There is a natural injection K ↪→ K̂
by x→ (xn), and | · | can be extended from K to K̂ by

|(xn)| = lim
n→∞

xn

A field F̂ with a discrete valuation v̂ is called a completion of F if v̂ |F= v. The metric

space (Q, dp) is not complete, and its completion is the p-adic number field Qp. The

p-adic numbers Qp are constructed by taking the completion of Q with respect to the

p-adic absolute value. If λ ∈ Qp then the p-adic absolute value on Q can be extended

to Qp by defining

|λ|p = lim
n→∞

|xn|p
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where (xn) is a Cauchy sequence in Q converging to λ. By considering the sequence

(xn) converging to λ it can be proved that | · |p is a non-Archimedean absolute value

on Qp. Likewise define vp on Qp by vp(λ) = −log|λ|p.

2.3 p-adic completion

Lemma 2.3.1. Let O be a DVR and v a valuation of it. Let K be the fraction field

of O, M =(π) for a uniformiser π, and O/M = k the residue field. Let A = {ai} be

any representative of O/M, ai ∈ O, and assume 0 ∈ A. Then every x ∈ K∗ can be

written as,

x = πv(x)

∞∑
n=0

anπ
n

with an ∈ A and a0 6= 0. ai are called the digits in the π-adic expansion of x.

Proof. Write x = πv(x)u for some unit u ∈ O×. Reducing mod π,

O/M ∼−→ k

u→ ū

There exists a unique a0 ∈ A such that a0 = ū, so a0 − u ∈M. Now writing u in the

form u = a0 + πu1 and reducing u1 mod π, there exists a unique a1 ∈ A such that

ā1 = ū1. Now u = a0 + πa1 + π2u2 and repeating the above argument, the partial

sums,

SN =
N∑
n=0

anπ
n → u

are obtained in the topology defined by v. Since v(SN − u) ≥ N implies SN → u,

clearly the an are unique.

Remark 2.3.2. 1. The open balls in K are of the form x+ πnO which is the set

of elements of K whose digits coincide with those of x up to an−1.

2. A sequence (xk) in K is Cauchy if and only if the digits of xk eventually stabilize.

Example 2.3.3. The field of p-adic numbers Qp is the completion of Q with respect to

| · |p. The ring of p-adic integers is its valuation ring. Let π = p and A = {0, 1, ...p−1}.
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Applying Lemma 2.3.1

Q ↪→

{
∞∑

n=n0

anp
n : an ∈ {0, 1, ..., p− 1}

}
= Qp

Z ↪→ O ↪→

{
∞∑
n=0

anp
n : an ∈ {0, 1, ..., p− 1}

}
= Zp

M = (p) =

{
∞∑
n=1

anp
n : an ∈ {0, 1, ..., p− 1}

}
Zp/M = Fp

Q ∩ Zp = Z(p) =
{a
b
∈ Q : p - b

}
The residue field is Fp = Z/pZ, the finite field with p elements. The mapping

a =
∑
i≥0

aip
i 7→ a0 (mod p)

defines a ring homomorphism ε : Zp → Fp called reduction modulo p. This reduction

map is obviously surjective, with kernel

{a ∈ Zp : a0 = 0} =

{∑
i≥1

aip
i = p

∑
j≥0

aj+1p
j

}
= pZp

Since the quotient is a field, the kernel pZp of ε is a maximal ideal of the ring Zp.
The set pZp is a subgroup of index p in Zp. The residue field of Qp is canonically

isomorphic to the finite field Fp with p elements.

The above discussions may be summarized as below:

Theorem 2.3.4. For each prime p ∈ Z there exists a field Qp with a non-Archimedean

absolute value | · |p such that :

i) There exists an inclusion Q ↪→ Qp, and the absolute value induced by | · |p on Q via

this inclusion is the p-adic absolute value.

ii) The image of Q under this inclusion is dense in Qp.

16



iii) Qp is complete with respect to the absolute value | · |p.
The field Qp satisfying (i), (ii) and (iii) is unique up to isomorphism preserving the

absolute values.

Proof. Proof is immediate from the above discussion.

Proposition 2.3.5. The inclusion Z ↪→ Zp has dense image. In particular, given

x ∈ Zp and n ≥ 1, there exists α ∈ Z, 0 ≤ α ≤ pn − 1, such that |x− a| ≤ p−n.The

integer α with these properties is unique.

Proof. Choose x ∈ Zp and n ≥ 1. Since Q is dense in Qp, it is possible to find a
b
∈ Q

which is close enough to x such that∣∣∣x− a

b

∣∣∣ ≤ p−n < 1.

For a
b

as above, ∣∣∣a
b

∣∣∣ ≤ max
{
|x|,
∣∣∣x− a

b

∣∣∣} ≤ 1

which says that a
b
∈ Q ∩ Zp, that is p - b. If p - b there exists an integer b′ ∈ Z such

that

bb′ ≡ 1 (mod pn),

which implies that ∣∣∣a
b
− ab′

∣∣∣ ≤ p−n,

ab′ ∈ Z.
Choosing α to be the unique integer such that

0 ≤ α ≤ pn − 1 and α ≡ ab′ (mod pn)

gives |x− a| ≤ p−n, the required result. In otherwords, Zp is the completion of Z with

respect to the p-adic absolute value.

The ring of ordinary integers Z is a subring of Zp via the natural inclusion

Z ↪→ Zp
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a 7→ (a (mod p), a (mod p2), ..., )

The principal ideals of Zp have an intersection equal to {0}:

Zp ⊃ pZp ⊃ p2Zp ⊃ ... ⊃ pkZp... ⊃ ∩k≥0p
kZp = {0}.

where

pnZp/pn+1Zp ∼= Z/pZ
x 7→ nth p-adic digit

Any element a 6= 0 has an order v(a) = k, hence a /∈ (pk+1). Infact, these principal

ideals are the only nonzero ideals of the ring of p-adic integers.

Each z ∈ Qp can be written in a unique manner as

z =
∑

n≥vp(z)

znp
n (0 ≤ zn < p)

Here vp(z) is the lowest power in the expansion of z as a p-adic number.

The fractional part of z is defined as

{z} :=
∑

0>n≥vp(z)

znp
n

Thus,

z = [z] + {z} : Qp = Zp + Z
[

1

p

]
More formally,

Definition 2.3.6. If a =
∑∞

n=0 dnp
n with dn = 0 for 0 ≤ n < k and dk 6= 0, then

|a|p = p−k, and if a =
∑∞

n=−m dnp
n, where d−m 6= 0, then |a|p = pm

Open balls in R are the are the open intervals B(a, r) = |x− a| < r. In Qp open

balls are the sets

B(a, r) = {x ∈ Qp : |x− a|p < r}.
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The closed balls are the sets

B̄(a, r) = {x ∈ Qp : |x− a|p ≤ r}

The sphere in Qp is the set

S(a, r) = {x ∈ Qp : |x− a|p = r}

Since p-adic norm has a discrete set of values, {pn|n ∈ Z} ∪ {0}, only balls of radii

r = pn, n ∈ Z are considered.

Proposition 2.3.7. The sphere S(a, r) is an open set in Qp.

Proof. Let x ∈ S(a, r) and B(x, ε) be an open ball such that ε < r.

Claim: B(x, ε) ⊂ S(a, r):

Let y ∈ B(x, ε). Then |x− y|p < |x− a|p = r and by Corollary 2.0.3 it is clear that

|y − a|p = |x− a|p = r, which means exactly that y ∈ S(a, r)

This is very strange since in Rn the spheres are certainly not open sets. This

strange property implies the following. The set of all balls in R is uncountable since

the set of all positive real numbers is uncountable (Cantor’s theorem), so it is true for

the set of all balls B(a, r) in R.

A completely different result holds for the set of all balls in Qp.

Proposition 2.3.8. The set of all balls in Qp is countable.

Proof. The center of the ball in its canonical form is given by

a =
∞∑

n=−m

anp
n

and let,

a0 =
s∑

n=−m

anp
n
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Clearly a0 is a rational number and |a − a0|p < p−s. i.e., a0 ∈ B(a, p−s). Then by

Proposition 2.0.5

B(a0, p
−s) = B(a, p−s)

Here both centers and radii come from countable sets. Therefore the product set of

all pairs (a0, s) is also countable and so is the set of all balls in Qp.

Lemma 2.3.9. Zp is a subring of Qp.

Proof. The proof is easy to verify.

The ring of p-adic integers Zp = {x ∈ Qp : |x|p ≤ 1}, is the closure of Z in Qp. It

is not difficult to see that B(0, p) = B̄(0, 1) = Zp.
and

Z×p = S(0, 1) = (1 + pZp) ∪ (2 + pZp) ∪ ... ∪ ((p− 1) + pZp).

There exists filtration of subsets

Z×p ⊃ 1 + pZp ⊃ 1 + p2Zp ⊃ ...

Lemma 2.3.10. The ring Zp has a unique maximal ideal

pZp = {x ∈ Qp : |x|p < 1}

and the elements of Zp/pZp are invertible in Zp.

Theorem 2.3.11. The space Qp is totally disconnected.

Proof. For each a ∈ Qp and each n ∈ N the set

Un(a) = {x ∈ Qp : |x− a|p ≤ p−n} = {x ∈ Qp : |x− a|p < p−n+1}

is an open and closed neighborhood of a. Suppose a ∈ A so that A 6= {0}. Then there

is an n ∈ N such that Un(a) ∩ A 6= A. Therefore,

A = (Un(a) ∩ A) ∪ (Qp \ Un(a) ∩ A),

where both Un(a) and its complement Qp \Un(a) are open and nonempty; this implies

that A is not connected.
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Definition 2.3.12. A topological space is locally compact if every point has a compact

neighbourhood.

Theorem 2.3.13. The space Qp is locally compact.

Proof. Since Zp is a neighbourhood of zero, it suffices to show that this is compact.

Since Zp is a closed set of a complete metric space it is complete. Now to complete

the proof it suffices to show that Zp is totally bounded. A set is totally bounded if,

for each ε > 0, the set can be covered with finitely many balls of radius ε. Thus it is

enough to take ε = p−n for some integer n ≥ 0. Since every x ∈ Zp can be expanded as

x = y0 + y1p+ y2p
2 + ...+ yjp

j + ..

this implies that there are finitely many balls B(0, p−n) that cover Zp.

2.4 Inverse limits

Definition 2.4.1. A partially ordered set (I,≤) is called a directed set if for every

i, j ∈ I ∃ k ∈ I such that, i ≤ k and j ≤ k.

Example 2.4.2. A totally ordered set is a directed set.

Example 2.4.3. N can be made into a directed set via (N,≤) or (N, |).

Definition 2.4.4. An inverse system {Gi, φij|i, j ∈ I, i ≥ j} of groups indexed by a

directed set I consists of a group Gi for each i ∈ I and a homomorphism φij : Gi → Gj

whenever i ≥ j in I such that φijφjk = φik when i ≥ j ≥ k.

Definition 2.4.5. An inverse limit of the inverse system is defined as

G = lim←−
i∈I

(Gi, φij) = lim←−
i∈I

Gi = {(gi)i∈I ∈
∏
i∈I

Gi : φij(gi) = gj∀j ≤ i}

such that the natural projection φi : G→ Gi, g = (gj)j∈I 7→ gi is a morphism for each

i ∈ I. This is a group (ring).
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Example 2.4.6. For a set of positive integers N∗ define an ordering n ≤ m if n|m.
For the inverse system (Z/nZ)

n∈N∗ of finite rings where the transition map πmn is the

natural projection, the inverse limit is

Ẑ = lim←−
n∈N∗

Z/nZ.

Consider the ring Z and its decreasing sequence of ideals In = pnZ. The inclusions

pn+1Z ⊂ pnZ lead to canonical transition homomorphisms

φn : Z/pn+1Z→ Z/pnZ

which is surjective and whose kernel is pn−1Z/pnZ
Then

Zp = lim←−
i∈N

Z/piZ

consists of sequences x = (..., xn, ..., x1) with xn ∈ Z/pnZ, and is the ring of p-adic

integers. The ring Zp is a complete discrete valuation ring with maximal ideal generated

by p, the residue field Z/pZ = Fp, and the fraction field

Qp = Zp
[

1

p

]
= ∪∞m=0p

−mZp

being the field of p-adic numbers.

Theorem 2.4.7. The mapping Zp → lim←−Z/pnZ that associates to the p-adic number

x =
∑
aip

i the sequence (xn)n≥1 of its partial sums xn =
∑

i<n aip
i mod pn is an

isomorphism of topological rings.

Proof. Since the transition homomorphism φn is given by∑
i≤n

aip
imod pn 7→

∑
i<n

aip
imod pn,

the coherent sequences in the product
∏

Z/pnZ are simply the sequences (xn) of

partial sums of a formal series
∑

i≥0 aip
i (0 ≤ ai ≤ p− 1), and those are precisely the
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p-adic integers. The relations

x1 = a0, x2 = a0 + a1p, x3 = a0 + a1p+ a2p
2, ...

and conversely

a0 = x1, a1 =
x2 − x1

p
, a2 =

x3 − x2

p2
, ..

show that the factorization Zp → lim←−Z/pnZ is bijective, and hence an algebraic

isomorphism. Since this is a continuous map between two compact spaces, it is a

homeomorphism, hence the result.

The homomorphisms Z → Z/pn+1Z → Z/pnZ furnish a limit homomorphism

Z→ lim←−Z/pnZ, which can be identified with the canonical embedding Z→ Zp. The

map ∑
i<n

aip
i mod pn 7→

∑
i<n

aip
i mod pnZp,

obviously defines an isomorphism Z/pnZ 7→ Zp/pnZp, and in particular

Zp/pZp ∼= Z/pZ = Fp.

More generally, the same argument shows that

Zp/pnZp ∼= Z/pnZ.

The restriction of reduction homomorphism Zp 7→ Z/pnZ to the subring

Z(p) = {a
b

: a ∈ Z, b ∈ N (b, p) = 1} ⊂ Q

is already surjective and has kernel pnZ(p), hence defines an isomorphism:

Z(p)/p
nZ(p)

∼= Z/pnZ

Starting with the subring Z(p) ⊂ Q it is clear that, Zp is a projective limit lim←−Zp/pnZ(p)

and hence a completion of Z(p). These considerations also show that a nonzero p-adic

number can also be uniquely written as x = pmu with m ∈ Z and a unit u ∈ Z×p ;
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hence

Q×p =
⊔
m∈Z

pmZ×p

is a disjoint union over the rational integers m ∈ Z.

Remark. If Z(p) ⊂ Q denotes the subring consisting of rational numbers having

denominator prime to p, then,

Q = ∪m≥0p
−mZ(p) and Q× =

⊔
p∈Z

pmZ×(p)

Z×(p) consists of the fractions having both numerator and denominator prime to p.

This gives an elementary description of the decomposition

Q = Z(p) + Z
[

1

p

]
induced by the decomposition

Qp = Zp + Z
[

1

p

]
Hensel’s Lemma:

Hensel’s Lemma is the most important algebraic property of the p-adic numbers and

of other fields like Qp or which are complete with respect to a non-Archimedean

valuation. The test involves finding an approximate root of the polynomial, and then

verifying a condition on the derivative of the polynomial.

Theorem 2.4.8. (Hensel’s Lemma) Let f(X) = a0 + a1X + ...anX
n be a polynomial

whose coefficients are in Zp. Suppose that there exists a p-adic integer α1 ∈ Zp such

that,

f(α1) ≡ 0(mod pZp)

and

f ′(α1) 6≡ 0(mod pZp)

where f ′(X) is the formal derivative of f(X). Then there exists a unique p-adic integer
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α ∈ Zp such that α ≡ α1 mod pZp and f(α) = 0.

2.5 Algebraic closure

The field Qp is not algebraically closed. The algebraic closure of Qp, denoted by Q̄p is

of infinite degree over Qp. Any field extension of Qp is also a Qp- vector space. E.g.

Q5(
√

2) is a vector space with basis {1,
√

2} over Q5. Q̄p is not complete with respect

to | · |p. The completion of algebraic closure of Q̄p is denoted by Ω, the smallest field

containing Q that is both complete and algebraically closed with respect to | · |p. The

field Ω is a beautiful, gigantic realm, in which p-adic analysis lives (Koblitz, 1984).
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Chapter 3

Dynamical Systems

Dynamical systems originally arose in the study of systems of differential equations

used to model physical phenomena. Mathematically, dynamical systems is the study of

long -term behavior in systems that evolve in time. The term dynamical systems refers

to either discrete-time or continuous-time dynamical systems. Most of the concepts

and results in dynamical systems have discrete-time and continuous-time version. The

continuous-time version can often be deduced from the discrete-time versions.

A continuous-time dynamical system consists of a space X and a one parameter

family of maps {f t : X → X|t ∈ R or t ∈ R+
0 }, that forms a one-parameter group or

semigroup, i.e., f [t+s] = f [t] ◦ f [s] and f [0] = identity. The dynamical system is called

a flow if the time t ranges over R, and a semi-flow if t ranges over R+
0 . For a flow, the

map f [t] is invertible, since f [−t] = (f [t])−1.

One simplification in this study is to discretize time, so that the state of the system is

observed only at discrete steps of time. This leads to the study of the iterates of a

single transformation. One is interested in both quantitative behavior, such as the

average time spent in a certain region, and also qualitative behavior, such as whether

a state eventually becomes periodic or tends to infinity.

A discrete-time dynamical system consists of a non-empty set X and a map φ : X → X.

For n ∈ N, the nth iterate of φ is the n-fold composition φ[n] = φ ◦φ ◦ ... ◦φ (n times);

φ[0] is defined to be the identity map. If φ is invertible, then φ−n = φ−1 ◦φ−1 ◦ ... ◦φ−1

(n times). Since φ[n+m] = φ[n] ◦ φ[m], these iterates form a group if φ is invertible, and
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a semigroup otherwise. For a given α in X, the forward orbit of α is the set

Oφ(α) = {φn(α) : n ≥ 0}

If the orbit Oφ(α) is finite then α is said to be a pre-periodic point, otherwise α is said

to be a wandering point. The central problem in dynamics is to classify the points α

in the set X according to the behavior of their orbits Oφ(α).

In practice X usually has additional structure that is preserved by the map f . For

example, (X, f) could be a measure space and a measure preserving map; a topological

space and a continuous map; a metric space and an isometry; or a smooth manifold

and a differentiable map; a finite set (e.g., finite field) and a polynomial.

A dynamical system with a continuous time or flow on a metric space X is a family

{φt : t ∈ R} of homeomorphisms of X such that the map (t, x)→ φt(x) is continuous.

A dynamical system with discrete time on a metric space X is a family {fn : n ∈ Z}
of homeomorphisms of X or a family {fn : n > 0} of continuous maps of X.

The iterations of a homeomorphism or a continuous map f : X → X form a dynamical

system.

In the context of a discrete dynamical system, where a given map is iterated, that

map might be invertible (because of being one-to-one and onto) or non-invertible

(failing one or the other or both of these conditions). So, discrete dynamical systems

come in two types, invertible and non-invertible. The invertible maps were introduced

by Poincaré, and have been extensively studied ever since. The studies of non-invertible

maps have been more sparse until recently, when they became one of the most active

areas on the research frontier because of their usefulness in applications.

The basic goal of dynamical systems is to understand the eventual or asymptotic

behavior of an iterative process. If the process is a differential equation whose inde-

pendent variable is time, then the theory attempts to predict the ultimate behaviour

of solutions of equations in either the distant future (t → ∞) or the distant past

(t→ −∞). If the process is a discrete process such as the iterations of a function, then

the theory hopes to understand the eventual behaviour of the points x, f(x), ... , fn(x)
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as n becomes large, (Devaney, 1989; Brin and Stuck, 2002; Khrennikov and Nilsson,

2004).

3.1 Symbolic dynamics

Symbolic dynamics arose as an attempt to study such systems by means of discretizing

space as well as time. The basic idea is to divide up the set of possible states into a

finite number of pieces. Each piece is associated with a “symbol”, and in this way

the evolution of the system is described by an infinite sequence of symbols. This

leads to a “symbolic” dynamical system that mirrors and helps us to understand

the dynamical behavior of the original system. Computer simulations of continuous

systems necessarily involve a discretization of space, and results of symbolic dynamics

help us understand how well, or how badly, the simulation may mimic the original.

Symbolic dynamics by itself has proved a bottomless source of beautiful mathematics

and intriguing questions.

3.1.1 Sequence spaces

As polygons and curves are to geometry, shift spaces are to symbolic dynamics. The

set

Σ = {0, 1, 2, ...,m− 1}N

is called the sequence space on m symbols 0, 1, ...,m− 1.

The most important ingredient in the sequence space is the shift map σ. The shift

map σ : Σ→ Σ is given by σ((s0, s1, s2, ..)) = (s1, s2, s3, ...).

The shift map discards the first entry in the sequence and shifts all other entries one

place to the left.

The distance between two sequences s = (s0, s1, ...) and t = (t0, t1, ...) is given by

d(s, t) =
∑∞

i=0
si−ti
mi

.

For an integer m > 1, set Am = {1, 2, ...,m}. Let Σm = AZ
m be the set of infinite

two sided sequences of symbols in Am and Σ+
m = AN

m be the set of infinite one-sided

sequences. The pair (Σm, σ) is called the full two sided shift; (Σ+
m, σ) is called the full

one sided shift. The two-sided shift is invertible. For a one-sided sequence, the leftmost
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symbol disappears, so the one-sided shift is non-invertible, and every point has m pre-

images. Both shifts have mn periodic points of period n. When the entries are from a

finite set the sequence space is usually homeomorphic to the standard Cantor set. The

shift spaces are compact topological spaces in the product topology. This topology

has a basis consisting of cylinders Cn1,...,nk
j1,..,jk

={x = (xl) : xni = ji, i = 1, 2, ..., k},
n1 < n2 < ... < nk are indices in Z or N, and ji ∈ Am. Since the preimage of a

cylinder is a cylinder, σ is continuous on Σ+
m and a homeomorphism on Σm. The

metric d(x, x′) = 2−l, for l = min{|i| : xi 6= x′i} generates the product topology on Σ+
m

and Σm. Thus both the spaces are compact zero dimensional metric spaces and are

homeomorphic to a Cantor set. In the product topology periodic points are dense

and hence there are dense orbits. A detailed study can be found in (Devaney, 1989;

Kitchens, 1998).

3.2 Some definitions and examples

Definition 3.2.1. The forward orbit of x is the set of points x, f(x), f [2](x)... denoted

by O+(x). If f is a homeomorphism, then the full orbit of x is denoted by O(x) and

f [n](x), n ∈ Z as the set of points in the orbit. The backward orbit of x is denoted by

O−(x) with the points x, f [−1](x), f [−2](x), ...

Definition 3.2.2. The point x is a fixed point for f if f(x) = x. A point x0 ∈ X
is said to be a periodic point if there exists r ∈ N such that f [r](x0) = x0. The least

positive n for which f [n](x) = x is called the prime period of x.

Example 3.2.3. The map f(x) = x fixes all points in R, whereas the map f(x) = −x
fixes the origin while all other points have period 2 .

Example 3.2.4. The map f(x) = x3 has 0, 1 and −1 as fixed points and no other

periodic points. The map q(x) = x2 − 1 has fixed points at 1±
√

5
2

, while the points 0

and 1 lie on a periodic orbit of period 2.

Definition 3.2.5. A point x is eventually periodic of period n if x is not periodic but

there exists m > 0 such that fn+i(x) = f i(x) for all i ≥ m. That is f i(x) is periodic

for i ≥ m.
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Example 3.2.6. Let f(x) = x2. Then 1 is fixed since f(1) = 1, while −1 is eventually

fixed since f(−1) = 1 .

Definition 3.2.7. The point x is called a critical point of f if f ′(x) = 0. The critical

point is nondegenerate if f
′′
(x) 6= 0 The critical point is degenerate if f

′′
(x) = 0

Example 3.2.8. The point f(x) = x2 has a nondegenerate critical point; but f(x) =

xn has a degenerate critical point at 0.

Definition 3.2.9. The notion of a topological group is given in the definition. A

continuous homomorphism of a topological group to itself is called an endomorphism;

an invertible endomorphism is an automorphism. Many important examples of

dynamical systems arise as translations or endomorphisms of topological groups.

The above examples and definitions follow from (Devaney, 1989; Brin and Stuck,

2002; Khrennikov and Nilsson, 2004; de Melo and van Strien, 1993).

Definition 3.2.10. Let Σn = {s = (s0, s1, ...)|sj ∈ {0, 1, ...(n− 1)}} be the set of

sequences of elements in {0, 1, 2, ..(n− 1)}. Then Σ2 = {s = (s0, s1, ...)|sj ∈ {0, 1}}.
Σn can be made into a metric space. For two sequences s = (s0, s1, ...) and t =

(t0, t1, ...), define

d(s, t) =
i=∞∑
i=0

|si − ti|
2i

When the state space is Σ2, since |si−ti| is either 0 or 1, this infinite series is dominated

by the convergent geometric series
∑∞

i=0
1
2i

(Devaney, 1989).

3.3 Arithmetic dynamical systems

Classically, discrete dynamics refers to the study of the iteration of self-maps of the

complex plane or real line. Arithmetic Dynamics is the study of number theoretic

properties of dynamical systems. Arithmetic dynamics is discrete-time dynamics (func-

tion iteration) over arithmetical sets, such as algebraic number rings and fields, finite

fields, p-adic fields, polynomial rings, algebraic curves, etc. The study of arithmetic

dynamics draws on ideas and techniques from both classical (discrete) dynamical
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systems and the theory of Diophantine equations. Some constructs of arithmetic

dynamics (periodic orbits and their stability), are straightforward adaptations of

dynamical concepts. A standard technique in number theory is to attempt to answer

questions related to a number field K by first studying analogous questions over each

completion Kv of K. In particular, the archimedean completions of K lead back to

classical dynamics over R or C. The connections between dynamical systems and

number theory arise in many different ways. One subject may provide a new insight

or tool for the other.

In the next two chapters two instances of discrete dynamical systems are studied

over the ring of p-adic integers Zp.
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Chapter 4

p-adic Dynamical Systems

The study of the dynamics of polynomial and rational maps over R and C has a long

history and includes many deep theorems. A more recent development is the creation

of an analogous theory over complete local fields such as the p-adic rational numbers

Qp and the completion Cp of an algebraic closure of Qp. The non-Archimedean nature

of the absolute value on Qp and Cp makes some parts of the theory easier than when

working over C or R. But as usual, there is a price to pay. For example, the theory of

non-Archimedean dynamics must deal with the fact that Qp is totally disconnected

and far from being algebraically closed, while Cp is not locally compact. One of the

most important gadgets in the number theorist’s toolbox is reduction modulo a prime.

Thus when studying the number-theoretic properties of an object, it can be reduced

modulo a prime, then analyze the properties of the hopefully simpler object, and lift

the information back to obtain global information. A typical example is provided

by Hensel’s lemma, which under certain circumstances allows to lift solutions of a

polynomial congruence f(x) ≡ 0(mod p) to solutions in Zp. Then, using information

gathered from many primes, one is sometimes able to deduce results for a global field

such as Q. (Silverman, 2007)

This section is devoted to discrete p-adic dynamical systems, namely iteration

xn+1 = f(xn)

of functions f : Qp → Qp.
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To study dynamical systems in fields of p-adic numbers Qp and complex p-adic

numbers Cp as well as finite extensions of Qp, it is convenient to consider the general

case of an arbitrary non-Archimedean field K.

4.1 Monomial dynamical systems

The definitions and theorems below are well known and can be found in any standard

text on p-adic dynamics. The most studied p-adic dynamical systems are the so called

monomial systems. A discrete monomial system is defined by the function f(x) = xn.

The roots of unity in Cp are essential for the investigations of monomial dynamical

systems.

Definition 4.1.1. An element x ∈ Cp is said to be an n-th root of unity if xn = 1. If

xn = 1 and xm 6= 1 for every m < n then we say that x is a root of unity of order n or

a primitive n-th root of unity.

The multiplicative group of Fpf is cyclic and has pf − 1 elements. Since a cyclic

group has a cyclic subgroup of order d for each divisor d of pf − 1, for every d|(pf − 1)

there exists x ∈ F×
pf

that generates the subgroup of d elements such that, xd = 1.

The element x generates a group of d roots of the polynomial xd − 1 in Fpf . By

Hensel’s lemma, for each d|(pf − 1), the equation xd − 1 = 0 has d solutions in Cp.

The definition of fixed - point, periodic - point are same as in dynamical systems.

Theorem 4.1.2. The equation xk = 1 has gcd(k, p− 1) solutions in Qp when p > 2.

If p = 2 then xk = 1 has two solutions (x=1 and x=-1) if k is even and one solution

(x=1) if k is odd.

Theorem 4.1.3. If p = 2 then the dynamical system xk = 1 has no cycles of order

r ≥ 2.

Theorem 4.1.4. Let x and y be two n-th roots of unity in Qp and let x 6= y. If p > 2

then |x− y|p = 1. If p = 2 then |x− y|p = 1
2
.

33



4.2 p-adic chaos and random numbers

It is natural to consider chaotic maps as a source of randomness. But from a

computational point of view these maps are not suited for machine computation .

Since the classical chaotic maps are usually defined on real manifolds and the machine

computation always admit discrete set of values.

Woodcock and Smart (1998) introduced the p-adic analog of the standard logistic map

x→ 4x(1− x)

and the Smale horse-shoe map

(x, y)→ (y, ax+ by2 + c)

for suitable a, b and c. The associated symbolic dynamics is respectively a one-sided

shift and a full shift on two symbols. This is also the case for the p-adic analogues on

p symbols rather than on two symbols. The analogous p-adic logistic and Smale horse-

shoe maps are considered as idealized random number generator and modification of

them is analysed in detail at p = 2 (Woodcock and Smart, 1998).

If p denotes a prime number, the p-adic logistic map is defined by

g : Zp → Zp

x→ xp − x
p

By Fermat’s little theorem g(x) = xp−x
p
∈ Z whenever x ∈ Z. The case p = 2,

leads to the analog of standard logistic map L(x) = x2−x
2

. Also, L is sensitive to

the initial condition in the sense that, if x, y ∈ Zp with vp(x − y) = n ≥ 1 then

vp(L(x)− L(y)) = n− 1, (Woodcock and Smart, 1998).
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Symbolic dynamics of (Zp, g)

For x ∈ Zp, the reduction modulo p of x is denoted by x̄ ∈ Fp and set X =
∏

i≥0(Fp)i,

which is the direct product of a countable sequence of copies of Fp, each with discrete

topology. On X, the continuous shift operator T : X → X is given by (T (x))i = xi+1

for all x = (xi) ∈ X. The set X is a Cantor-like set, so in particular totally disconnected.

Thus the following result follows:

Theorem 4.2.1. Any two totally disconnected perfect compact metric spaces are

homeomorphic.

Theorem 4.2.2. There is a homeomorphism Φ : Zp → X such that T ◦ Φ = Φ ◦ g.

It can be deduced from the above theorem that, the dynamical systems (Zp, g) and

(X,T ) are toplogically conjugate. Hence many properties of (Zp, g) can be directly

read off from the symbolic representation (X,T ). Thus, one is led to consider iterates

of g(x) modulo powers of p and those of L(x) modulo powers of 2. In particular, the

map L(x) has been studied in great detail. Let Xe = {1, 2, 3, ...., 2e} and Le(x) denote

the reduction of L(x) modulo 2e. Then it is shown that Le : Xe → Xe defined by

Le(x) = x2−x
2

(mod 2e) is a permutation of Xe, in fact an even permutation. It is also

shown that as e increases, longer and longer orbits of Le are got which behave well

with respect to randomness and this particular case has been investigated in great

detail as a source of generating pseudorandom numbers (Woodcock and Smart, 1998).

4.3 Topologically equivalent dynamical systems

In order to classify dynamical systems, notion of equivalence is needed. If f : X → X

and g : Y → Y are two dynamical systems then a semiconjugacy from (Y, g) to (X, f)

is a surjective map π : Y → X satisfying f ◦ π = π ◦ g.

An invertible semiconjugacy is called a conjugacy. If there is a conjugacy from one

dynamical system to another, the two systems are said to be conjugate; conjugacy is

an equivalence relation. To classify dynamical systems, equivalence classes determined

by conjugacies preserving some specified structure are studied.
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Definition 4.3.1. (Kuznestov, 1998; Kitchens, 1998; Devaney, 1989) A dynamical

system {T,Rn, φt} is called topologically equivalent to a dynamical system {T,Rn, ψt}
if there is a homeomorphism h : Rn → Rn mapping orbits of the first system onto

orbits of the second system, preserving the direction of time.

In general one can speak of topological conjugacy for homeomorphism of dif-

ferent topological spaces, f : X → X, f ′ : X ′ → X ′. Then the conjugacy h is a

homeomorphism h : X → X ′ if f = h−1f ′h.

Topological conjugation defines an equivalence relation in the space of all continuous

surjections of a topological space to itself. This equivalence relation is very useful in

the theory of dynamical systems, since each class contains all functions which share

the same dynamics from the topological viewpoint.

This section concentrates on the topological conjugacy of the logistic map defined

by Woodcock and Smart (1998) over the p-adic field. As a special case the topological

conjugacy of the square map is considered. If h is a homeomorphism and f and g are

related by f = h−1 ◦ g ◦ h, then f and g generally have similar behaviour; f and g

are said to be topologically equivalent. The special homeomorphisms h(x) = ax+ b of

Qp (with a, b ∈ Qp a, b 6= 0) is applied to the logistic map defined by L(x) = xp−x
p

for

p = 2 as a special case; also, the same homeomorphism is applied to the quadratic

map and shown that these conjugate maps can behave quite differently and depends

very much on the constants a, b and the prime p.

Now let h(x) = ax + b, a, b ∈ Qp and a 6= 0. Then h−1(x) = x−b
a

, both h and

h−1 are one-to-one, onto and continuous, hence homeomorphisms of Qp. Further, h

is an isometry (preserves distances) if |a|p = 1. The conjugates of the quadratic and

logistic maps under such homeomorphisms are considered with the primary goal of

being able to do all the computations in integer arithmetic.

Let g(x) = x2. A straightforward calculation gives f(x) = h−1 ◦ g ◦ h(x) =

ax2 + 2bx + b2−b
a

. The fixed points of g(x) are 0 and 1 while those of f(x) are −b
a

and 1−b
a

. To compute the sequences xi = g(xi−1) or xi = f(xi−1) in a computer it is
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clear that the initial value x0 must be chosen in Zp ∩ Z = Z, as a computer cannot

represent a general p-adic integer to arbitrary accuracy. Further some fixed level of

p-adic precision is obtained by doing all the computations modulo pe. This is also

justified since Z is dense in Zp (consequence of Hensel’s lemma).

The simplest case is when a = 1 and h(x) = x+ b, a translation and isometry.

The conjugate map is f(x) = x2 + 2bx+ (b2 − b). If b ∈ Z then all iterates of f are

integers and the fixed points 0 and 1 get mapped to −b and (1− b). Both have similar

dynamics and are topologically equivalent.

If a 6= 1, then for the fixed points −b
a

and 1−b
a

to lie in Z it is necessary that a

divides b and a divides 1− b. But this is impossible as b and 1− b are always co-prime.

So if a divides exactly one of b or 1− b we get that only one of the fixed points is in Z
while the other may or may not be in Zp depending on the p-adic absolute values of a

and b. One choice of a and b that makes −b
a

and 1−b
a

to lie in Z is a = 1
pl

and b = 1
pk

with l ≥ k.

Then f(x) = 1
pl
x2 + 2

pk
x+ pl(1−pk)

p2k
. Clearly values of f and its iterates will not

be integers if l, k > 1. So, let l = k = 1 i.e., a = b = 1
p
. Then f(x) = (x+1)2

p
− 1, its

fixed points are −b
a

= −1 and 1−b
a

= p− 1. Since we need all iterates to be in Z, let

x0 ∈ Z. Then x1 = f(x0) = (x0+1)2

p
− 1 and this forces x0 ≡ −1(mod p). In this case

x1 ≡ −1(mod p) and so all successive iterates also lie in Z. Moreover, since there is a

factor of p in the denominator defining f(x), it is clear that if g(x) is reduced mod pe

then f(x) needs to be reduced mod pe+1. Also, all values of f(x) are ≡ −1(mod p) and

there are exactly pe distinct such numbers in the set {1, 2, 3, ..., pe+1} namely, tp− 1

with t = 1, 2, 3..., pe. Both f(x) and g(x) have similar dynamics and are topologically

equivalent.

Two simple examples are given below:

1. Let a = 3 and b = 2. Then f(x) = 3x2 + 4x+ 2
3
. Clearly iterates of f will not be

integers. The fixed points are −2
3

and −1
3

and they lie in Zp if and only if p 6= 3.

2. Let a = 2 and b = 3. Then f(x) = 2x2 + 6x + 3 and so f and all its iterates
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will be integers. Here the fixed points are −3
2

and -1, and −3
2
∈ Zp if and only if

p 6= 2.

Finally, the logistic map L(x) = x2−x
2

is considered.

The translations h(x) = x + b with b ∈ Z gives f(x) = x2+(2b−1)x+b(b−3)
2

and this is

always an integer if x is an integer.

Fixed points are −b and 3− b and both belong to Z. Thus, both f and g topologically

equivalent. As before, since p = 2 here, a = b = 1
2

and f(x) = x2−5
4

, so we need

to reduce f(x) mod 2e+1 if L(x) is reduced mod 2e. Also only odd values of x are

admissible if f(x) is to be an integer and all iterates of f are odd if x is odd. All the

2e odd values in the set {1, 2, 3, ..., 2e+1} are taken on by f .

Both L(x) as well as f(x) have similar dynamics with respect to cycle lengths

and fixed points. All the computations for f(x) is verified as done in (Woodcock and

Smart, 1998) and agrees with it. For monomial systems defined by g(x) = xn (n > 2)

the analysis is more involved and will be considered in future.
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Chapter 5

p-adic Backward Dynamics

5.1 Backward dynamics

Backward-iteration sequences given by

xn = f(xn+1), n > 0

are of a different nature because a point could have infinitely many pre-images as

well as none. If the given forward moving map is a quadratic map, the corresponding

backward map is a square root map; if the given map is a cubic map the corresponding

backward map is the cube root map and so on. Thus essentially one needs to solve

f(x) = 0 as a polynomial over the defining set. For e.g., the Julia set can be found

as the set of limit points of the set of pre-images of (essentially) any given point.

Unfortunately, as the number of iterated pre-images grows exponentially, this is

not feasible computationally when the underlying set is the set of Real or Complex

numbers.

In general, maps of higher degree (≥ 5) are not suitable for backward dynamics over R
or C. As there is no explicit formula for solving a polynomial of degree ≥ 5, roots can

be found by using standard techniques from Numerical Methods over R or C and one

arrives at either a null sequence or constant sequence after some backward iterations.

In such cases nothing can be said about the behavior of trajectories. But when the set

is finite (endowed with algebraic structure) and the map is a polynomial it is possible
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to retrieve the pre-images (roots), if they exist, with respect to different prime power

moduli and thus study the structure of pre-images locally at that prime.

It is shown that this problem can be well understood over the ring of p-adic integers

Zp. This process deals with an important branch of mathematics called Inverse Limit

Theory.

Definition 5.1.1. Given a dynamical system defined by xn = G(xn+1), an infinite

sequence {xn} is said to be forward admissible (backward admissible) if xn = G(xn+1)

for all n ∈ N (respectively for all −n ∈ N)(refer 3.2) .

To define infinite inverse sequences of G one must choose x1 on the ordinate axis.

The next point in the sequence x2 must belong to the pre-image of x1 under G. If the

pre-image of x1 contains more than one point, one of them is chosen if both the values

are admissible and the procedure is repeated. During this process at any step k ≥ 1,

if the pre-image of a point xk, under G, is empty, the sequence cannot be extended

any further and the process must be stopped. The procedure is repeated for all initial

points and for all possible combinations of pre-images. (If G is a two-to-one map

there may be up to 2n inverse sequences of length n for each initial point). All the

sequences that had to be terminated after a finite number of steps must be discarded

because they are not forward admissible according to the Definition 5.1.1.

5.2 Inverse limit theory

Some examples and basic definitions of Inverse limits are discussed in section 2.4.

Universal property of inverse limits:

Definition 5.2.1. A topological group is a set G with both the structure of a group,

and of a topological space, such that the multiplication law G × G → G and the

inverse map G→ G are continuous maps of topological spaces.

Definition 5.2.2. A homomorphism of topological groups is a homomorphism of the

underlying groups which is continuous. An isomorphism of topological groups is a

homomorphism of the underlying groups which is a homeomorphism.
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The definition of isomorphism is equivalent to the existence of an inverse (con-

tinuous) homomorphism, but is not equivalent to being a (continuous) bijective

homomorphism, because the set-theoretic inverse need not be continuous in general.

Let I = (I,≤) denote a directed partially ordered set or directed poset. An inverse

or projective system of topological spaces (respectively, topological groups) over I,

consists of a collection {Xi | i ∈ I} of topological spaces (respectively, topological

groups) indexed by I, and a collection of continuous mappings (respectively, continuous

group homomorphisms) ϕij : Xi → Xj, defined whenever i ≥ j such that the diagram

of the form

Xi
ϕik
> Xk

Xj

ϕjk

∧
ϕij >

Figure 5.1: Projective limits

commutes whenever they are defined, i.e., whenever i, j, k ∈ I and i ≥ j ≥ k.

Such a system is denoted by {Xi, ϕij, I} or by {Xi, ϕij} . if the index set I is clearly

understood. If X is a fixed topological space (respectively, topological group), denote

by {X, id} the inverse system {Xi, ϕij, I}, where Xi = X for all i ∈ I, and ϕij is

the identity mapping id : X → X. Then {X, id} is the constant inverse system on

X. Let Y be a topological space (respectively, topological group ), {Xi, ϕij, I} an

inverse system of topological spaces (respectively, topological groups ) over a directed

poset I, and let ψi : Y → Xi be a continuous mapping (respectively, continuous group

homomorphism ) for each i ∈ I. These mappings ψi are said to be compatible if

ϕijψi = ψj whenever j ≤ i.

One says that a topological space (respectively, topological group) X together with

compatible continuous mappings (respectively, continuous homomorphisms)

ϕi : X → Xi ∀i ∈ I
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is an inverse limit or a projective limit of the system {Xi, ϕij, I} if the following

universal property is satisfied:

whenever Y is a topological space (respectively, topological group) and

ψi : Y → Xi i ∈ I

is a set of compatible continuous mappings (respectively, continuous homomorphisms),

then there is a unique continuous mapping (respectively, continuous homomorphism)

ψ : Y → X such that ϕiψ = ψi ∀ i ∈ I. One may say that ψ is “induced” or

“determined” by the compatible homomorphisms ψi.

The maps ϕi : X → Xi are called projections. The projective maps ϕi are not

necessarily surjections. The inverse limit is denoted by (X,ϕi), or often simply by

X, by abuse of notation. The definitions are depicted in the form of commutative

diagram 5.2 below.

Y

X

ψ

∨

Xi
ϕij

>

ψi

<

ϕi
<

Xj

ψj

>ϕj >

Figure 5.2: Universal property of inverse limits

If {Xi, I} is a collection of topological spaces (respectively, topological groups)

indexed by a set I, its direct product or Cartesian product is the topological space

(respectively, topological group)
∏

i∈I Xi, endowed with a product topology.

Let X0, X1, X2, ... be a countable collection of spaces, and suppose that, for each

n > 0, there is a continuous mapping fn : Xn → Xn−1. The seqence of spaces and
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mappings {Xn, fn} is called an inverse limit sequence and may be represented as

...
fn+1−−→ Xn

fn−→ Xn−1...
f2−→ X1

f1−→ X0

Clearly, if n > m, there is a continuous mapping fn,m : Xn → Xm given by the

composition fn,m = fm+1 · fm+2 · · · fn−1 · fn.

Consider a sequence (x0, x1, ..., xn, ..) such that each xn is a point of the space Xn

and such that xn = fn+1(xn+1), n ≥ 0. Such a sequence can be identified in the

product space
∏∞

n=0Xn by considering a function ϕ from the non-negative integers

into ∪∞n=0Xn, given by ϕ(n) = xn. Thus the set of all such sequences is a subset of∏∞
n=0Xn and has a topology as a subspace. This topological space is the inverse limit

space of the sequence {Xn, fn} denoted by X = lim←−(Xn, fn).

Theorem 5.2.3. Suppose that each space Xn in the inverse limit sequence {Xn, fn}
is a compact Hausdorff space. Then X is not empty (Hocking and Young, 1961).

Theorem 5.2.4. A space X is a compact Hausdorff space with dim(X) ≤ 0 if and

only if X is an inverse limit of finite discrete spaces (Nagami, 1970).

A finite discrete space is totally disconnected, compact and Hausdorff and all those

properties carry over to inverse limits too.

A detailed study of Inverse limit spaces can be found in (Hocking and Young, 1961).

An important class of such inverse limits is given by rings of p-adic integers Zp. For

every n ≥ 1, let An = Z/pnZ. An element of An defines in an obvious way an element

of An−1 and the homomorphism

ϕn : An → An−1

is surjective and the kernel is pn−1An. The sequence

...→ An → An−1...→ A2 → A1

forms a “projective system” indexed by the integers ≥ 1.

Inverse limit of this inverse system is Zp = lim←−(An, ϕn). An element of Zp = lim←−(An, ϕn)

is a sequence x = (..., xn, ..., x1) with xn ∈ An and ϕn(xn) = xn−1 if n ≥ 2. Addition
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and multiplication in Zp are defined co-ordinate wise. In other words, Zp is a subring

of the product
∏

n≥1An. If An is endowed with discrete topology and
∏

n≥1An the

product topology, the ring Zp inherits a topology which turns it into a compact space.

The connection between congruences and equations is based on the simple

remark that, if the equation

F (x1, x2, ..., xn) = 0

where F is a polynomial with integral coefficients, has a solution in integers, then the

congruence

F (x1, x2, ..., xn) ≡ 0 (mod m)

is solvable for any value of the modulus m. On the other hand the situation is

more complicated for congruences. For any modulus m > 1, there are polynomial

congruences having no solutions. For eg., the congruence xp− x+ 1 ≡ 0 (mod m) has

no solution if p is any prime factor of m by Fermat’s theorem. In general, a congruence

can have more solutions than its degree, for eg., x2 − 7x+ 2 ≡ 0 (mod 10) has four

solutions x = 3, 4, 8, 9. But if the modulus is a prime, a congruence cannot have more

solutions than its degree.

Theorem 5.2.5. If the degree n of f(x) ≡ 0 (mod p) is greater than or equal to p,

then either every integer is a solution of f(x) ≡ 0 (mod p) or there is a polynomial

g(x) having integral coefficients, with leading coefficient 1, such that, g(x) ≡ 0 (mod p)

is of degree less than p and the solutions of g(x) ≡ 0 (mod p) are precisely those of

f(x) ≡ 0 (mod p).

Theorem 5.2.6. The congruence f(x) ≡ 0 (mod p) of degree n has atmost n solu-

tions.

Corollary 5.2.7. If bnx
n+ bn−1x

n−1 + ...+ b0 ≡ 0 (mod p) has more than n solutions,

then all the coefficients bj are divisible by p.

Theorem 5.2.8. The congruence f(x) ≡ 0 (mod p) of degree n, with leading coeffi-

cient an = 1, has n solutions if and only if f(x) is a factor of xp− x modulo p, that is,
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if and only if xp−x = f(x)q(x) + ps(x), where q(x) and s(x) have integral coefficients,

q(x) has degree p − n and leading coefficient 1, and where s(x) is a polynomial of

degree less than n or s(x) is zero.

The proofs of the above theorems are simple consequences of Fermat’s little theorem

and its application which can be found in many books on number theory.

5.2.1 Hensel’s lifting lemma

As both Q and R are not algebraically closed, they do not always contain all roots

of polynomials with integer coefficients. Though C is algebraically closed, as the

degree of the polynomial increases, finding roots of the polynomial is computationally

not feasible, as it requires high level of precision for machine computation. For this

purpose it is natural to turn one’s attention to solving polynomial congruences modulo

prime powers.

One may note that for any polynomial f(x) ∈ Z[x] and any integer r, there is a

polynomial gr(x) ∈ Z[x] with f(x+ r) = f(r) + xf ′(r) + x2gr(x).

This can be seen either through the Taylor expansion for f(x + r) or through the

binomial theorem in the form

(x+ r)d = rd + drd−1x+ x2

d∑
j=2

(
d

j

)
rd−jxj−2 (5.2.1)

The above standard results mentioned in the form of Theorems can be used to find the

solutions to f(x) ≡ 0 (mod p). The question is how one may be able to lift a solution

to one modulo pk for various exponents k. With regard to this, Hensel’s Lemma is

a powerful tool which relates the roots of a given polynomial to its solution modulo

a prime. The lemma and its proof both rely on iterative procedures that return an

agreeable solution if supplied with a well-behaved seed.

Definition 5.2.9. If f(a) ≡ 0 (mod p), then the root a is called nonsingular if

f ′(a) 6≡ 0 (mod p); otherwise it is singular.

Two versions of Hensel’s Lemma are stated below.
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Theorem 5.2.10. (Hensel’s Lemma over the ring of integers)

Suppose that f(x) is a polynomial with integral coefficients. If f(a) ≡ 0 (mod pj) and

f ′(a) 6≡ 0 (mod p), then there is a unique t (mod p) such that

f(a+ tpj) ≡ 0 (mod pj+1).

Theorem 5.2.11. (Hensel’s Lemma over the ring of p-adic integers)

Let f ∈ Zp[x] be monic. If a0 ∈ Z is a simple root of f(x) ≡ 0 (mod p), then ∃ y ∈ Zp
such that y ≡ a0 (mod p) and f(y) = 0.

Proof. Suppose that ∃an such that f(an) ≡ 0 (mod pn). Need to show that an can be

lifted uniquely to an+1 (mod pn+1) such that an+1 ≡ an (mod pn) and f(an+1) ≡ 0

(mod pn+1), then y is the limit of this sequence of (mod pk) solutions.

Since f is a polynomial one can write it in the form f(x) =
∑

i cix
i. Also consider

tpn + an as a possible lift of an . Then

f(an + tpn) =
∑
i

ci(tp
n + an)i (5.2.2)

≡ f(an) + pntf ′(an) (mod pn+1). (5.2.3)

The equivalence above is a result of Taylor series expansion. Now, solve for t in

pntf ′(an) + f(an) ≡ 0 (mod pn+1).

Thus

tf ′(an) ≡ −
(
f(an)

pn

)
(mod p).

But, f(an) ≡ 0 (mod pn), (since an ≡ a0 (mod p)) and f ′(an) 6≡ 0 (mod p) (simple

root), so, t has a unique solution (mod p). Thus an+1 = an + tpn is a unique lift of

an (mod p). Thus an infinite sequence of ai such that f(ai) ≡ 0 (mod pi), f ′(ai) 6≡ 0

(mod pi) and ai+1 ≡ ai (mod p) is obtained. This sequence is Cauchy, and therefore

converges to a unique limit y ∈ Zp.

Since Z is dense in Zp, proof of Theorem 5.2.10 follows directly from Theorem

5.2.11.

It can be verified that proof of Hensel’s Lemma is entirely analogous to Newton’s
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method for locating the root of a differentiable function. Recall Newton’s method from

calculus as a method of finding roots to a polynomial by choosing a seed and then

making better and better approximations based on the polynomial’s derivative at that

point. In the case of Newton’s method, the condition on the seed is that the derivative

at that point be non-zero, otherwise it supplies no useful information for improving at

each iteration. Hensel’s Lemma is similar, it takes a polynomial with coefficients in

Zp and instead of requiring a guess at a possible root, it requires a p-adic integer that

is a root mod p, i.e. some α such that the polynomial f(x) evaluated at α is

f(α) ≡ 0 (mod pZp)

This method will then return roots mod p, p2, p3, ... until the desired root of the

equation is found.

5.3 p-adic approximation

It is known that the direct product of totally disconnected spaces is totally disconnected.

Also, if the original spaces are discrete, then the limit space lim←−{X, f} is totally

disconnected. This is one way of realizing the p-adic numbers and the Cantor set (as

infinite strings). Since the space lim←−{X, f} is totally disconnected, it is not possible

to base the arithmetic structure on R, the set of real numbers. But it is possible to

consider the space lim←−{X, f} to be Zp, the ring of p-adic integers. This follows from

the following two theorems.

Theorem 5.3.1. Any two totally disconnected perfect compact metric spaces are

homeomorphic.

Theorem 5.3.2. Let M be a compact, totally disconnected metric space. Then M is

homeomorphic to the inverse limit space of an inverse limit sequence of finite, discrete

spaces.

To find the backward iteration of any given polynomial f(x) of arbitrary degree

say n, at any point, say xn of the forward iterating orbit, one needs to solve

f(x) ≡ xn (mod pk) (5.3.1)
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for some k ∈ N. For this, first solve the congruence f(x) ≡ xn (mod p), such that the

nonzero coefficients of f(x) are relatively prime to p and xn is chosen as above, so

that the corresponding backward iterating orbit of xn are found modulo pj, j →∞.
If the degree n of f(x) is greater than p, then by Theorem 5.2.5, f(x) is divisible by

(xp − x) mod p and solutions of the resulting polynomial g(x) are the same as those

of f(x) ≡ xn (mod p). Since the modulus is prime, the congruence cannot have more

solutions than its degree.

Let a1, a2, ..., al be the roots obtained, by solving the congruence f(x) ≡ xn (mod p)

where (l ≤ deg(g(x) by Theorem 5.2.6). Now each ai is lifted modulo pj, j = 2, 3, ...

whenever f ′(ai) 6≡ 0 (mod p), (i = 1, 2, .., l.)i.e., whenever the a′is are nonsingular.

Working up to a fixed precision say j = k, once the roots are lifted modulo pk, xn is

replaced by the lifted root and the congruence (5.3.1) is solved now with respect to

the new root. The process of replacing the old root by the new lifted root is repeated

for some finite number of steps. Thus with respect to each nonsingular ai, we obtain

the corresponding backward sequence, generated from the single seed xn. Thus if

there are n nonsingular roots, after the mth step of replacing the old root by the new

lifted root, there are atmost nm backward iterating points generated from the single

seed xn. Hence there exists a tree like structure, the roots may be called as leaves and

the branches are formed at each new lifted root. A simple code for this program can

be written on Python, which computes the sequences effectively.

Sequences thus obtained belong to the inverse limit space by definition. It can be

verified that the sequence space formed by the above backward iterations is totally

disconnected and discrete. Also, if the original spaces are discrete, then the inverse

limit space lim←−{X, f} is totally disconnected. This is one way of realizing the p-adic

numbers and the Cantor set.

To study the long time behaviour of a dynamical system it is necessary to introduce

a suitable metric. A natural choice would be the one given in section 3.1, i.e.,

the distance between two sequences s = (s0, s1, ...) and t = (t0, t1, ...) is given by

d(s, t) =
∑∞

i=0
si−ti
pi

.

Thus by the introduction of a metric, sequence space of backward iteration becomes a

compact metric space. The sequence space thus obtained can be identified with the

ring of p-adic integers. Since extensive study has been made on the dynamics of the
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logistic map, the p-adic analog of the logistic map is deliberately chosen as a practical

example for backward dynamics. If p denotes a prime, p-adic logistic map is defined

to be

` : Zp → Zp

x→ cx(1− x)

where c is small in the sense |c|p < 1. Denote the reduction of x modulo p by x̄ ∈ Fp
and set X =

∏
i≥0(Fp)i which is the direct product of countably infinite copies of

Fp, each with discrete topology. Also, X is a compact Hausdorff space. On X the

continuous shift operator is defined as

T : X → X

T (x)i = xi+1 ∀x ∈ X.

The following theorem is basic:

Theorem 5.3.3. There is a homeomorphism ϕ : Zp → X such that T ◦ ϕ = ϕ ◦ `.

Proof. This follows from theorems 5.3.1 and 5.3.2.

Since ϕ is an injective mapping, it induces a natural injective map:

ϕN : Zp/pNZp →
N−1∏
i=1

(Fp)i

The mapping is surjective for each N ≥ 1. From the above theorem it is clear that the

dynamical systems (Zp, l) and (X,T ) are topologically conjugate which means that

many properties of (Zp, l) can be read off directly from the more transparent symbolic

representation (X,T ). As an illustration, to observe backward moving points in the

orbit cycle, the quadratic equation y = cx(1− x), where y is the current value and c

is the given constant is considered. On solving, two equations for x are obtained.

x1 =
c+

√
c2 − 4cy

2c
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x2 =
c−

√
c2 − 4cy

2c

Both these values may not always lie in Zp. To find the set of all values in Zp, the

following consequence of Hensel’s Lemma is useful.

Theorem 5.3.4. (Katok, 2007, chapter 1) A polynomial with integer coefficients has

a root in Zp if and only if it has an integer root modulo pk for any k ≥ 1.

In particular, when the given equation is quadratic, say of degree two, it is known

that a rational integer x not divisible by a prime p has a square root in Zp if and

only if x is a quadratic residue modulo p. To know the set of all admissible backward

sequences, we need to check whether c2 − 4cy is a quadratic residue modulo the base

prime p. The backward sequences generated by y = cx(1− x) will be nonempty, as

long as the roots of y = cx(1 − x) are quadratic residues modulo the base prime p,

that is to say that the roots of y = cx(1− x) lie in Zp.

Since the logistic map f(x) = cx(1− x) and the quadratic map g(x) = x2 + d

are conjugates of each other through a linear homeomorphism x = ay + b, (refer 3.2)

for suitable a and b, the maps are equivalent as far as their dynamics are concerned.

Since the transformation is done through a homeomorphism, their topological features

are preserved. The maps also preserve the properties like pseudorandomness, number

of orbit cycles with respect to the given initial point.
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Chapter 6

Number Fields

The theory of algebraic number fields has its origin in the attempts to generalize the

quadratic reciprocity law and related questions. The development of Algebraic Number

Theory is divided into three main periods. The period (1800− 1870) is considered to

be the introductory period. In this sense, it started with Gauss, Eisenstein, Jacobi,

and Dirichlet and reached its first peak in the work of Kummer about cyclotomic

fields. Kummer restricted his investigations to algebraic numbers connected with the

nth roots of unity and the nth roots of such numbers. On the other hand, Dirichlet

considered the group of units of the ring generated over Z by an arbitrary integral

algebraic number and determined the structure of this group. It was Dedekind who

understood that the basic notion of the theory is the notion of algebraic number field

(in German, algebraischer Zahlkörper), which was absent in the investigations of his

predecessors.

The period (1871− 1896) is considered as the basic period. During this period

the basic notions and theorems were formulated and proved. This was done in three

equivalent ways by Dedekind, Kronecker, and Zolotarev. Dedekind formulated the

theory by means of ideals, an approach which is now generally accepted. Dedekind’s

invention of ideals in the 1870s was a major turning point in the development of

algebra. His aim was to apply ideals to number theory, but to do this he had to

build the whole frame work of commutative algebra: fields, rings, modules and vector

spaces.
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The study of Class field theory began in the period (1897 − 1930), considerd

to be the heroic period. An abelian extension of a field is a Galois extension of the

field with abelian Galois group. Class field theory describes the abelian extensions of

a number field in terms of the arithmetic of the field. Already Kronecker conjectured

that there is a theory of abelian extensions (i.e., normal extensions with abelian

Galois groups) of algebraic number fields which is much richer than the theory of

algebraic number fields in general. This was based on his investigations about abelian

extensions of Q and of imaginary quadratic extensions. But the first formulations

of such a theory go back to D. Hilbert and H. Weber. Hilbert defined what is now

called the Hilbert class field of an algebraic number field K. This is the maximal

abelian extension H of K that is unramified at all places. The degree of this extension

should be the class number of K and the inertial degree of a prime ideal p of K in H
should be equal to the order of its class in the ideal class group of K. Furthermore,

Hilbert conjectured that every ideal of K becomes principal in H (Principal ideal

conjecture). The existence of the Hilbert class field has been proved by P. Furtwan̈gler

in Allgemeiner Existenzbeweis für den Klassenkörper eines beliebigen algebraischen

Zahlkörpers, Math. Ann. 1907. Bd. 63. S. 137.

6.1 Basic concepts

An algebraic number field is a finite extension of Q; an algebraic number is an element

of an algebraic number field. More precisely,

Definition 6.1.1. A number α in C is called an algebraic number if there exists a

polynomial f(x) = anx
n + · · · + a0 such that, a0, ..., an, not all zero are in Q and

f(α) = 0.

If α is a root of monic polynomial with coefficients in Z then α is an algebraic integer.

Clearly all algebraic integers are algebraic numbers. However the converse is not true.

Definition 6.1.2. An algebraic number of degree d is a root of an integral polynomial

of degree d and not the root of an integral polynomial of degree less than d. If α is an

algebraic number, the field Q(α) is formed from the adjunction of α to the rational

field Q, this is an algebraic number field of degree d over Q generated by α.
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Q is the smallest algebraic number field of dimension 1 over itself. The simple field

extension Q(α) is the smallest subfield of C containing both Q and α.

Complex numbers that are not algebraic are called transcendental numbers, examples

being e and π. Therefore the real numbers R may be considered as the disjoint

union of algebraic and transcendental numbers. Georg Cantor proved that the set

of all algebraic numbers is countable, and so, the set of transcendental numbers are

uncountable.

Definition 6.1.3. A subfield K of C is called an algebraic number field if its dimension

as a vector space over Q is finite. The dimension of K over Q is called the degree of

K, and is denoted by [K : Q].

Definition 6.1.4. Let F be an algebraic number field. If α is algebraic over F , then

it has a unique minimal polynomial over F , denoted by mα,F (x), called the minimal

polynomial of α over F. Conversely, if α is the root of an irreducible, monic polynomial

f(x) ∈ F [x], then f is its minimal polynomial over F . Moreover every polynomial in

F [x] for which α is a root must be divisible by mα,F (x).

Let E be an extension field of F , and let K be the set of all elements of E that

are algebraic over F . Then K is an algebraic field extension of F .

Definition 6.1.5. The set of all algebraic numbers Q̄ in C is a subfield of C. In

particular all finite extensions of Q are of the form Q(α) for an algebraic number α.

Definition 6.1.6. Let the set of all algebraic integers in Q̄ be denoted by A. Then

A is a subring of Q̄. Then for any algebraic number field F , the intersection F ∩ A
is a ring in F called the ring of algebraic integers in F , denoted by OF . The ring of

integers of Q is A ∩Q = Z.

Definition 6.1.7. Roots of the minimal polynomial mα,F (x) of α are called the

conjugate roots or conjugates of α. If mα,F (x) has degree n, then α has n conjugates.

Also, if α is algebraic over F , then [F (α : F )] = deg(mα,F (x)). Thus, F (α) can be

viewed as a vector space over F of dimension deg(mα,F (x)). In particular, all finite

extensions of Q are of the form Q(α) for an algebraic number α.
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Definition 6.1.8. If F = Q(α) is an algebraic number field of degree d over Q, there

exist exactly d embeddings θj for j = 1, 2, ..., d of F in C. Furthermore, all of the

conjugates of α over Q are the θj(α) = αj with α1 = α, and these are precisely the

roots of the minimal polynomial mα,F (x) of α over Q.

The following result is well known:

Theorem 6.1.9. Let K = Q(α) be an extension field of degree n over Q. Let ω1, ..., ωn

be a basis of K as a vector space of dimension n over Q. Then the matrix Ω = (ω
(j)
i )

is invertible.

Let F be an algebraic number field of degree d over Q, and let θj for j = 1, 2, ..., d

be the embeddings of F in C. For each element α ∈ F , set

TF (α) =
d∑
j=1

θj(α)

called the trace of α from F , and

NF (α) = Πd
j=1θj(α)

called the norm of α from F. If α is an algebraic integer then both TF (α) and NF (α)

are in Z. If F is a number field then the ring of integers in F , is denoted by OF . The

ring of integers of Q is OQ = Z.

Definition 6.1.10. The ring OF of integers of an algebraic number field F is an

abelian group under addition. Then a basis for OF over Z or simply a Z-basis, is

called an integral basis for F or for OF . Thus, {α1, α2, ..., αs} is an integral basis if

and only if all αi ∈ OF and every element of OF can be uniquely expressed in the

form a1α1 + ...+ asαs for rational integers a1, ..., as.

The following results are basic, proofs which can be found in any standard text on

Algebraic Number Theory.

Theorem 6.1.11. Every algebraic number field F of degree d over Q has an integral

basis, and OF is a free abelian group of rank d. As a Z−module

OF = Zβ1 ⊕ ....⊕ Zβd.
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Thus OF is a free abelian group of rank d, i.e., where {β1, β2, ...βd} is a basis for OF .

Let K be a number field and OK be its ring of integers. An element α ∈ OK is

called a unit if ∃β ∈ OK such that, αβ = 1. The set of all units in OK denoted by

U(K) forms a multiplicative subgroup of K∗.

Theorem 6.1.12. Dirichlet’s Units Theorem

Let U(K) be the unit group of K. Let [K : Q] = n, and n = r1 + 2r2 where r1 and

2r2 are, respectively, the number of real and complex embeddings of K in C. Then

there exist fundamental units ε1, ..., εr, where r = r1 + r2 − 1, such that, every unit

ε ∈ U(K) can be written uniquely in the form

ε = ζεn1
1 ...ε

nr
r

where n1...nr ∈ Z and ζ is a root of unity in OK . More precisely, if WK is the subgroup

of UK consisting of roots of unity, then WK is finite and cyclic and U(K) ' WK ×Zr.

Example 6.1.13. 1. For R = Q, U(Q) = Q \ {0}

2. For R = Z, the units are ±1.

3. For R = Z[i], the units are, {±1,±i}

Theorem 6.1.14. The group of units U of the imaginary quadratic field Q(
√
d), for

d squarefree is as follows:

� For d = −1, U = {±1,±i}

� For d = −3, U = {±1,±ω,±ω2}

� For all other d, U = {±1}

Theorem 6.1.15. The group of units of a real quadratic field Q(
√
d) is infinite cyclic.

Proposition 6.1.16. For a domain D,

1. x is a unit if and only if x|1.

2. Any two units are associates and any associate of a unit is a unit.
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3. x, y are associates if and only if x|y and y|x.

4. x is irreducible if and only if every divisor of x is an associte of x or a unit.

5. an associate of an irreducible is irreducible.

Proofs follow directly from the definition. Thus an element a in a domain D is a

unit if and only if norm N(a) = ±1

A domain D is called a unique factorization domain if factorization into irreducibles

is possible and unique. In a unique factorization domain all irreducibles are prime.

Ideals

An ideal is a nonempty subset I of a commutative ring R satisfying:

� If α, β ∈ I, then α− β ∈ I

� If r ∈ R, and α ∈ I, then αr ∈ I.

Definition 6.1.17. An ideal I in a commutative ring R is called a principal ideal if

there exists some a ∈ R such that, I = (a). An integral domain R is called a principal

ideal domain if every ideal of R is a principal ideal.

Definition 6.1.18. An ideal I in a commutative ring R is called a prime ideal if it is

a proper ideal and ab ∈ I implies a ∈ I or b ∈ I.

Definition 6.1.19. An ideal I in a commutative ring R is a maximal ideal if it is a

proper ideal and there is no ideal J with I $ J $ R.

Theorem 6.1.20. A proper ideal I in R is a prime ideal if and only if R/I is a

domain. A commutative domain with 1 6= 0 is called an integral domain.

Theorem 6.1.21. A proper ideal I in R is a maximal ideal if and only if R/I is a

field.

Theorem 6.1.22. Any prime ideal of OK is maximal.

Remark 6.1.23. If p is a prime ideal in O, then p contains exactly one prime number

p > 0 of Z.

56



The norm N(α) of the principal ideal (α) generated by α 6= 0 in O is the absolute

value |NK(α)| of the norm NK(α).

Corollary 6.1.24. For t ∈ Z, N(tO) = |N(t)| = t2.

Lemma 6.1.25. Let a and b be integral ideals. Then N(ab) = N(a)N(b)

If R is an integral domain, the field of fractions of R, Frac(R) is the field of all

equivalence classes of formal quotients a/b, where a, b ∈ R with b 6= 0, and a/b ∼ c/d

if ad = bc.

Definition 6.1.26. An integral domain R is integrally closed in its field of fractions

if whenever α is in the field of fractions of R and α satisfies a monic polynomial

f(x) ∈ R[x], then α ∈ R.

Every unique factorization domain is integrally closed.

Proposition 6.1.27. If K is any number field then OK is integrally closed.

Definition 6.1.28. A fractional ideal is nonzero OK-submodule I of K that is finitely

generated as an OK-module.

A fractional ideal a of OK is an OK- module contained in K such that there exists

m ∈ Z with ma ⊂ OK . Any ideal of OK is a fractional ideal by taking m = 1.

Theorem 6.1.29. Any fractional ideal is finitely generated as an OK module.

Theorem 6.1.30. Given any fractional ideal a 6= {0} in K, there exista a fractional

ideal a−1 such that aa−1 = OK.

From Theorem 6.1.11, it is immediate that, if K is a number field, then every OK
ideal I is a subgroup of the free abelian group OF of rank [K : Q] = d. Hence I is a

free abelian group OK of rank d. Thus I has a Z basis {α1, α2, ..., αd} ⊂ OK , where

αj are called the generators of I and has the Z module structure of I as

I = [α1, ..., αd]

Ideals in a commutative ring R with identity are called R-ideals for convenience.
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Proposition 6.1.31. Let a be a nonzero ideal of OK. Then a ∩ Z 6= {0}.

Proof. Let α be a nonzero algebraic integer in a satisfying the minimal polynomial

xr+ar−1x
r−1+....+a0 = 0 with ai ∈ Z∀i and a0 not zero. Then a0 = −(αr + ...+ a1α).

Thus, a0 ∈ Z and αr + ...+ a1α ∈ a

A ring is called Noetherian if every ascending chain I1 ⊂ I2 ⊂ I3 ⊂ ... of ideals

terminates, i.e., if there exists n such that In = In+k for all k ≥ 0.

Theorem 6.1.32. For any commutative ring R, the following are equivalent.

� R is Noetherian

� Every nonempty set of ideals contains a maximal element.

� Every ideal of R is finitely generated.

Dedekind Domain

A Dedekind domain R is an integral domain satisfying the following properties:

� Every ideal of R is finitely generated.

� Every nonzero prime ideal of R is maximal.

� R is integrally closed in its quotient field.

Thus, an integral domain R is a Dedekind domain if it is noetherian, integrally closed

in its field of fractions, and every nonzero prime ideal of R is maximal.

Theorem 6.1.33. The ring of integers OK of a number field K has the following

properties:

1. It is a domain with field of fractions K.

2. It is noetherian

3. If α ∈ K satisfies a monic polynomial equation with coefficients in OK, then

α ∈ OK. i.e., OK is integrally closed in its field of fractions K.

4. Every nonzero prime ideal of OK is maximal.
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Theorem 6.1.34. If K is a number field, then the ring of integers OK is a Dedekind

domain.

Proposition 6.1.35. Any principal ideal domain is a Dedekind domain.

Proposition 6.1.36. Every nonzero prime ideal in OK contains exactly one integer

prime.

Lemma 6.1.37. If R is a Dedekind domain and I is any proper ideal of R, then I

contains a product of prime ideals.

Theorem 6.1.38. Every proper nonzero ideal in a Dedekind domain R is uniquely

representable as a product of prime ideals.

Theorem 6.1.39. If R is a Dedekind domain, then every nonzero, prime, integral

R-ideal is invertible.

Ideal Class group

Lemma 6.1.40. If R is a Dedekind domain, then the set of all fractional ideals

forms a multiplicative abelian group, denoted by F(R). The set P(R) consisting of all

principal fractional R-ideals is a subgroup of F(R).

Definition 6.1.41. Let R be a Dedekind domain. Then the quotient group F(R)/P(R)

is called the class group of R, denoted by CR. Two fractional ideals are equivalent if

they belong to the same coset of P(R) in F(R). The group of equivalence classes of

ideals is called the ideal class group.

Definition 6.1.42. The ideal class group denoted by Cl(K), is the quotient group

Cl(K) = FK/PK .

The cardinality of Cl(K) denoted by hK is called the class number.

Theorem 6.1.43. Suppose that R is a Dedekind domain. Then R is a unique factor-

ization domain if and only if CR has order 1.

Theorem 6.1.44. If K is a number field, then the class number of K is finite.
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Definition 6.1.45. If K is a number field with signature {r1, r2}, where [K : Q] =

n = 2r1 + r2. Then the cardinality |CK | is called the class number of OK , denoted by

hK . The value

MK =
n!

nn

(
4

π

)r2√
|∆K |

is called the Minkowski bound for K.

Theorem 6.1.46. Let K be an algebraic number field of degree n over Q. Then each

ideal class contains an ideal a satisfying

N(a) ≤MK =
n!

nn

(
4

π

)r2√
|∆K |.
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Chapter 7

Quadratic Fields

Definition 7.0.47. Any algebraic number field of degree two is a quadratic field.

Definition 7.0.48. A quadratic field is called a real or an imaginary quadratic field

according as K ⊂ R or not.

A quadratic field K is real if and only if K = Q(
√
d) with square free d > 1 in Z.

The ring of integers of any quadratic field is given by

OK =

{
Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√
d

2
] if d ≡ 1 (mod 4)

The discriminant of the field K is

∆(O) =

{
4d if d ≡ 2, 3 (mod 4)

d if d ≡ 1 (mod 4)

Proposition 7.0.49. For a quadratic field K with discriminant d, one has K =

Q(
√
d). Further 1, d+

√
d

2
is an integral basis of the ring O of algebraic integers in K.

Corollary 7.0.50. The discriminant uniquely determines a quadratic field.

Let p be any prime ideal in O. Then p contains a unique prime number p > 0, p ∈ Z.

Proposition 7.0.51. For an odd prime p and a quadratic field of discriminant d, the

following holds:
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� pO = p2, p prime if and only if
(
d
p

)
= 0

� pO = pp′, p 6= p′, p prime if and only if
(
d
p

)
= 1

� pO = p prime if and only if
(
d
p

)
= −1,

where
(
d
p

)
is the Legendre symbol.

Proposition 7.0.52. Let O be the ring of integers in a quadratic field of discriminant

d. Then

� 2O = p2, p prime if and only if
(
d
2

)
= 0

� 2O = pp′, p 6= p′, p prime if and only if
(
d
2

)
= 1

� 2O = p prime if and only if
(
d
2

)
= −1,

where
(
d
2

)
is the Kronecker′s quadratic residue symbol.

7.1 Mersenne primes in quadratic fields

It is well known that ad − 1 divides an − 1 for each divisor d of n, and if n = p, a

prime, then

ap − 1 = (a− 1)(1 + a+ a2 + ...+ ap−1) (7.1.1)

and if ap − 1 is a prime, then a = 2.

Number theorists of all persuasions have been fascinated by prime numbers of the

form 2p − 1 ever since Euclid used them for the construction of perfect numbers. In

modern times, they are named after Marin Mersenne (1588-1648). A well known

result due to Euclid is that, if 2p − 1 is a prime, then 2p−1(2p − 1) is perfect. Much

later Euler proved the converse, every even-perfect number has this form.

Mersenne primes have been studied by amateurs as well as specialists. Mersenne

primes are used in cryptography too in generating pseudorandom numbers. By far,

the most widely used technique for pseudorandom number generation is an algorithm

first proposed by Lehmer, known as the linear congruential method. It is generated
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by the recursion Xn+1 ≡ aXn (mod M31), where M31 is the Mersenne prime 231 − 1.

Of the more than two billion choices for a only handful of multipliers are useful. One

such value is a = 75 = 16807, which was originally designed for use in the IBM 360

family of computers.

Many have attempted to generalize the notion of Mersenne primes and even-perfect

numbers to complex quadratic fields with class number 1. One reason is that they

have only finitely many units. Indeed, with the exception of Q(
√
−1) and Q(

√
−3),

the other seven complex quadratic fields with class number 1 have only two units:

±1. Spira (1961) defined Mersenne primes over Q(
√
−1) to give a useful definition of

even-perfect numbers over Z[i], the ring of Gaussian integers. His work was continued

later by McDaniel (1974, 1990) to give an analogue of Euclid-Euler Theorem over

Q(
√
−1) and Q(

√
−3). In both the papers the concept of Mersenne primes is used to

give a valid definition of even-perfect numbers.

Recently Pedro Berrizbeitia and Iskra (2010) studied Mersenne primes over Gaussian

integers and Eisenstein integers. The primality of Gaussian Mersenne numbers and

Eisenstein Mersenne numbers are tested using biquadratic reciprocity and cubic

reciprocity laws respectively.

Since the concept of Mersenne primes over Real quadratic fields has not been studied,

in this chapter the concept of Mersenne primes has been extended to real quadratic

fields K = Q(
√
d) with class number 1. As usual, the ring of integers of K is denoted

by OK ,

OK =

{
Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√
d

2
] if d ≡ 1 (mod 4)

Since K is a unique factorization domain, irreducibles are primes in these domains.

Hence for any η ∈ K the two factorings of η say

η = πk11 π
k2
2 ...π

kr
r and η = ε1π

k1
1 ε2π

k2
2 ...εrπ

kr
r

are considered to be one and the same, where εi are units and πi are irreducibles.

Define Mp,α = αp−1
α−1

such that α ∈ OK is irreducible and (α− 1) = u is a unit other

than ±1. Then Mp,α may be called as an analog of Mersenne prime if the norm of
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Mp,α namely N(Mp,α) = N(α
p−1
α−1

) is a rational prime.

The irreducibility of α is tested for d ≡ 2, 3 (mod 4) and for d ≡ 1 (mod 4), for the

values of d up to 499.

Possible Questions

� Find all irreducibles α in the ring of integers of K such that α− 1 is some unit

u with

� N(α− 1) = N(u) = ±1 in the ring of integers of K depending on

� d ≡ 2, 3 (mod 4) and d ≡ 1 (mod 4).

Conditions under which α is irreducible is considered below.

Theorem 7.1.1. Let d ≡ 2, 3 (mod 4) and N(α− 1) = −1. Then α is irreducible if

and only if d = 2 and u ∈ {1 +
√

2, 1−
√

2, −1 +
√

2, −1−
√

2}.

Proof. Let α be irreducible and u = a + b
√
d. Then α = (a + 1) + b

√
d. Hence,

N(α) = (a+ 1)2 − 2b2 = N(u) + 2a+ 1 = 2a. Since α is irreducible, 2a should be a

rational prime. Hence a = ±1. With a = 1, u = 1 + b
√
d and N(u) = −1 = 1− b2d.

i.e., b2d = 2. Since d is square-free, d = 2 and b = ±1.

Similarly with a = −1, one obtains b = ±1 and d = 2.

Conversely let d = 2 and u = a+ b
√

2 be any unit in Q(
√

2) with N(u) = −1. Then

α = (a+ 1) + b
√

2 and N(α) = (a+ 1)2−2b2 = a2−2b2 + 2a+ 1 = N(u) + 2a+ 1 = 2a,

is a rational prime, if and only if a = ±1. As before, we get b = ±1.

Hence, different choices of u for which α is irreducible are respectively, 1 +
√

2, 1−√
2, −1 +

√
2 and −1−

√
2. As 1 +

√
2 = u is the fundamental unit, these values are,

u,−u−1, u−1,−u. Corresponding α values are, 2 +
√

2, 2−
√

2,
√

2 and −
√

2.

Since 2−
√

2 and −
√

2 are the conjugates of 2 +
√

2 and
√

2 respectively, Mp,α is

computed at α = 2 +
√

2 and
√

2.

For α = 2 +
√

2 a few Mersenne primes in Q(
√

2) are given below:
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p Mp,α N(Mp,α)

2 3 +
√

2 7

3 9 + 5
√

2 31

5 97 + 67
√

2 431

7 1121 + 791
√

2 5279

11 152193 + 107615
√

2 732799

Table 7.1: Mersenne primes in Q(
√

2) for α = 2 +
√

2

The next Mersenne primes are found at

p = 73, with N(Mp,α) = 851569055172258793218602741480913108991,

p = 89 with N(Mp,α) = 290315886781191681464330388772329064268797313023,

p = 233 with N(Mp,α) = 18060475427282023033368001231166441784737806891537

806547065314167911959518498581747712829157156517940837234519177963497324543.

With α =
√

2, Mp,α = (
√

2)p−1√
2−1

.

Thus, N(Mp,α) = 2p − 1, giving all the usual Mersenne numbers.

Theorem 7.1.2. Let d ≡ 1 (mod 4) and α − 1 = u = a+b
√
d

2
be a unit such that,

N(u) = N(α− 1) = −1. Then, α is irreducible, if and only if, a is a rational prime

and b is some odd integer.

Proof. By hypothesis, N(α) = (a+2)2−db2
4

= a since N(u) = −1. For α to be irreducible

a should be an odd rational prime.

Indeed if a = 2 then u = 2+b
√
d

2
and N(u) = 4−db2

4
= −1 ⇒ b2d = 8. This is impossible

since d ≡ 1 (mod 4). Since d ≡ 1 (mod 4) it is clear that b is some odd integer.

Thus, the analogs of Mersenne primes are defined for d ≡ 1 (mod 4) whenever units

are of the form u = p+(2n+1)
√
d

2
, where n ∈ Z and p is an odd rational prime.

The converse is straightforward since the norm of α is a = p, a rational prime by

assumption.

The Table below shows the values of d ≡ 1 (mod 4), d < 500 for which N(u) = −1,

α is irreducible and u is the fundamental unit.
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Q(
√
d) u α N(α)

Q(
√

13) 3+
√

13
2

5+
√

13
2

3

Q(
√

29) 5+
√

29
2

7+
√

29
2

5

Q(
√

53) 7+
√

53
2

9+
√

53
2

7

Q(
√

149) 61+5
√

149
2

63+5
√

149
2

61

Q(
√

173) 13+
√

173
2

15+
√

173
2

13

Q(
√

293) 17+
√

293
2

19+
√

293
2

17

Table 7.2: K = Q(
√
d); d ≡ 1 (mod 4) and N(u) = −1.

As an illustration:

p N(Mp,α)

5 1231

7 25117

11 9181987

19 1098413907397

Table 7.3: Mersenne primes in K = Q(
√

13) for α = 5+
√

13
2

The next Mersenne prime is found at p = 41.

Theorem 7.1.3. Let d ≡ 2, 3 (mod 4) and u = a + b
√
d be a unit, such that

N(u) = 1, then α is always reducible.

Proof. By hypothesis, α = (a+ 1) + b
√
d and N(α) = 2(1 + a), which is prime only if

a = 0, which contradicts N(u) = 1. Hence α is not irreducible.

Theorem 7.1.4. Let d ≡ 1 (mod 4) and u = a+b
√
d

2
be a unit such that N(u) = 1.

Then, α is irreducible, if and only if, a + 2 is a rational prime and b is some odd

integer.

Proof. By hypothesis, N(α) = (a+2)2−db2
4

= a + 2, since N(u) = 1. For α to be

irreducible a + 2 should be a rational prime. Clearly a 6= 0. Hence a + 2 is an odd

rational prime. Hence, a2 ≡ 1 (mod 4). Since d ≡ 1 (mod 4) it is clear that b
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is some odd integer. Thus, the analogs of Mersenne primes are defined for d ≡ 1

(mod 4) whenever units are of the form u = a+(2n+1)
√
d

2
, where n ∈ Z and a+ 2 is an

odd rational prime.

Converse is straightforward as in Theorem 7.1.2.

The Table below lists the values of d < 500, d ≡ 1 (mod 4) for which N(u) = 1,

α is irreducible and u is the fundamental unit.

Q(
√
d) u α N(α)

Q(
√

21) 5+
√

21
2

7+
√

21
2

7

Q(
√

77) 9+
√

77
2

11+
√

77
2

11

Q(
√

93) 29+3
√

93
2

31+3
√

93
2

31

Q(
√

237) 77+5
√

237
2

79+5
√

237
2

79

Q(
√

437) 21+
√

437
2

23+
√

437
2

23

Q(
√

453) 149+7
√

453
2

151+7
√

453
2

151

Table 7.4: K = Q(
√
d); d ≡ 1 (mod 4) and N(u) = 1

As an illustration consider the following table:

p N(Mp,α)

17 223358425353211

Table 7.5: Mersenne primes in K = Q(
√

21), for α = 7+
√

21
2

The next Mersenne prime is found at p = 47.

Similar calculations are obtained for Q(
√

77), the fundamental unit is u = 9+
√

77
2

and α = 11+
√

77
2

.

p N(Mp,α)

2 23

7 10248701

Table 7.6: Mersenne primes in K = Q(
√

77) for α = 11+
√

77
2
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The next Mersenne prime is found at p = 71.

Remarks

1. In Tables 7.2 and 7.4 above, the fundamental unit u is chosen in Q(
√
d). However,

it is possible that, α = 1 + u is not irreducible with u as fundamental unit and

yet α′ = 1 + u′ is irreducible for some other unit u′ in Q(
√
d).

As an illustration Q(
√

5) is considered. Here, u = 1+
√

5
2

is the fundamental unit.

But, α = 1 + u = 3+
√

5
2

= u2 is again a unit!

However, with u′ = u2 = 3+
√

5
2

, we get α′ = 1 + u′ = 5+
√

5
2

and N(α′) = 5, so α′

is irreducible. Another choice is u5 = u
′′

= 11+5
√

5
2

and α
′′

= 1 + u
′′

= 13+5
√

5
2

is

irreducible since N(α
′′
) = 11.

2. Theorems 7.1.1 and 7.1.3 imply the following: Among all fields Q(
√
d), d ≡ 2, 3

(mod 4), Q(
√

2) is the only field where α = 1 + u is irreducible. There are

essentially only two choices for α, namely
√

2 and 2 +
√

2.

Similar to usual Mersenne primes in Z, quadratic Mersenne norms have the following

properties:

Properties of Mp,α:

1. If N(Mn,α) is prime, then n is prime.

2. The sequence {N(Mn,α)}∞n=1 is an increasing sequence of integers that starts at

1.

3. If d divides n then Md,α divides Mn,α in Q(
√
d) and N(Md,α) divides N(Mn,α).

4. If d and n are relatively prime then Md,α is relatively prime to Mn,α in Q(
√
d)

and N(Mn,α) is relatively prime to N(Md,α).

Experimental evidence shows that Mersenne primes are sparse in Q(
√
d) for d ≡ 1

(mod 4). Some interesting properties of Mersenne primes in Q(
√

2) are given below.
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Mersenne primes in Q(
√

2)

1. Since α = 1 + u = 2 +
√

2 = u
√

2, where u is the fundamental unit, we have

αn = an + bn
√

2 = un(
√

2)n , for any integer n > 0 and an, bn ∈ Z. A small

calculation also reveals that,

αn =

{
(2

n−1
2

√
2)un if n is odd;

2
n
2 un if n is even.

which is

αn =

{
(2

n−1
2

√
2)(vn + wn

√
2) if n is odd; wn, vn ∈ Z;

2
n
2 (v′n + w′n

√
2) if n is even; v′n, w

′
n ∈ Z.

It can be noted that, wn, the coefficient of
√

2 in un is odd if n is odd. Also,

2
n+1
2 wn = an and 2

n−1
2 vn = bn.

And, w′n, the coefficient of
√

2 in un is even if n is even. Also,

2
n
2 v′n = an and 2

n
2w′n = bn.

For n odd, N(u)n = −1, so

N(αn) = N(2
n−1
2

√
2)N(u)n = N(2

n−1
2 )N(

√
2)(−1)n = 2n−1(−2)(−1) = 2n

For n even, N(u)n = 1, and

N(αn) = N(2
n
2 )N(u)n = N(2

n
2 )(1) = 2n.

2. For any odd prime p, let αp = ap + bp
√

2 for some ap, bp ∈ Z.

Then,

N(αp − 1) = N((ap − 1) + bp
√

2) = (ap − 1)2 − 2b2
p

= a2
p − 2b2

p − 2ap + 1

= 2p − 2ap + 1
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But,

N(Mp,α) = N

(
αp − 1

α− 1

)
= −N(αp − 1) = 2ap − 2p − 1 = 2

p+3
2 wp − 2p − 1.

3. As already noticed, ap has a factor of 2
p+1
2 .

Hence, 2ap ≡ 0 (mod 4). This further implies that, N(Mp,α) ≡ −1 (mod 4) for

p ≥ 2 and N(Mp,α) ≡ −1 (mod 8) for p > 2.

The next three properties are consequences of quadratic reciprocity, and
( ·
·

)
denotes the Legendre symbol.

4. Let p be an odd prime. If p ≡ ±1 (mod 8), then

2
p+3
2 = 222

p−1
2 ≡ 4 (mod p).

If p ≡ ±3 (mod 8), then

2
p+3
2 = 222

p−1
2 ≡ −4 (mod p).

Combining the above we get,

N(Mp,α) ≡

{
4wp − 3 (mod p) if p ≡ ±1 (mod 8);

−4wp − 3 (mod p) if p ≡ ±3 (mod 8).

5. If N(Mp,α) is a rational prime and q is any other prime then

(
N(Mp,α)

q

)(
q

N(Mp,α)

)
=

{
1 if q ≡ 1 (mod 4);

−1 if q ≡ 3 (mod 4).

6. If N(Mp,α) is a rational prime then
(

2
N(Mp,α)

)
= 1 since N(Mp,α) ≡ −1 (mod 8).

Hence,
√

2 ∈ FN(Mp,α), the finite field with N(Mp,α) elements.
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7.1.1 Testing for primality

Several primality tests are available and some are specially designed for special numbers,

an example being the famous Lucas-Lehmer Test for the usual Mersenne primes. One

can show that the generalized Mersenne numbers of Q(
√

2) can be put in a special

form, so that recent primality tests can be used to determine whether they are prime.

Now,

N(Mp,α) = N

(
αp − 1

α− 1

)
= 2

p+3
2 wp − 2p − 1,

or,

N(Mp,α) = 2
p+3
2 (wp − 2

p−3
2 )− 1

Since wp is odd, (wp − 2
p−3
2 ) is odd for p > 3.

For p > 3,

N(Mp,α) = h.2
p+3
2 − 1, where h = (wp − 2

p−3
2 ), odd.

An algorithm to test the primality of numbers of the form h · 2n ± 1, for any odd

integer h such that, h 6= 4m − 1 for any m is described in (Bosma, 1993). It can be

noted that, h is not equal to 4m − 1 in Mp,α for any m. Hence, the algorithm given in

(Bosma, 1993) can be used to test the primality of Mp,α.

7.2 Primes of the form x2 + 7y2

The problem of representing a prime number by the form x2 + ny2, where n is any

fixed positive integer dates back to Fermat. This question was best answered by Euler

who spent 40 years in proving Fermat’s theorem and thinking about how they can

be generalized, he proposed some conjectures concerning p = x2 + ny2, for n > 3.

These remarkable conjectures, among other things, touch on quadratic forms and their

composition, genus theory, cubic and biquadratic reciprocity. Refer (Cox, 1989) for a

thorough treatment. Some elementary properties of the form x2 + ny2 are disussed

below.

Lemma 7.2.1. Let n be a nonzero integer, and p be an odd prime not dividing n.
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Then

p|x2 + ny2, gcd(x, y) = 1⇐⇒
(
−n
p

)
= 1

Euler became intensely interested in this question in the early 1740’s and he

mentions numerous examples in his letters to Goldbach. One among several of his

conjectures stated in modern notation is(
−7

p

)
= 1⇐⇒ p ≡ 1, 9, 11, 15, 23, 25 (mod 28)

The study of integral quadratic forms in two variables

f(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z

began with Lagrange, who introduced the concepts of discriminant, equivalence and

reduced form. A primitive positive definite form ax2 + bxy + cy2 is said to be reduced

if

|b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c

The form x2 + ny2 is always a reduced form with discriminant −4n.

The following lemma gives necessary and sufficient condition for a number m to be

represented by a form of discriminant D.

Lemma 7.2.2. Let D ≡ 0, 1 (mod 4) and m be an integer relatively prime to D.

Then m is properly represented by a primitive form of discriminant D if and only if

D is a quadratic residue modulo m.

As a corollary :

Corollary 7.2.3. Let n be an integer and p be an odd prime not dividing n. Then(
−n
p

)
= 1 if and only if p is represented by a primitive form of discriminant −4n.

In 1903, Landau proved a conjecture of Gauss (Theorem 7.2.4 below):

Let h(D) denote the number of classes of primitive positive definite forms of dis-

criminant D, i.e., h(D) is equal to the number of reduced forms of discriminant

D.
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Theorem 7.2.4. Let n be a positive integer. Then

h(−4n) = 1⇔ n = 1, 2, 3, 4 or 7.

Theorem 7.2.4 only gives the value of n when h(−4n) = 1. For h(−4n) > 1 the

theorem fails. For eg., when n = 5, D = −20. But h(−20) = 2 and e,

p ≡ 1, 3, 7, 9 (mod 20)⇐⇒
(
−5

p

)
= 1

⇐⇒ p = x2 + 5y2 or 2x2 + 2xy + 3y2

In general, two primitive positive definite forms of discriminant D are in the same

genus if they represent same the values in (Z/DZ)∗. Equivalent forms represent the

same numbers and hence are in the same genus. This turns out to be the basic idea

of genus theory (Cox, 1989). In this section the case n = 7 is considered to represent

N(Mp,α) in the form x2 + 7y2 whenever Mp,α is a Mersenne prime in Q(
√

2). By

theorem 7.2.4 above, x2 + 7y2 is the only reduced form of discriminant −28, and it

follows that

p = x2 + 7y2 ⇐⇒ p ≡ 1, 9, 11, 15, 23, 25 (mod 28)

for primes p 6= 7.

The following theorem 7.2.5 provides a classical illustration.

Theorem 7.2.5. Let p be an odd prime congruent to 1, 2, or 4 mod 7. Then p can

be written as

p = x2 + 7y2

for certain integers x and y; moreover, x and y are uniquely determined up to sign.

7.3 Norms of Mersenne primes of the form

x2 + 7y2 in Q(
√
2)

On March 3, 1998, the birth centenary of Emil Artin was celebrated at the Universiteit

van Amsterdam. The paper (Lenstra and Stevenhagen, 2000) is based on two lectures

given on the occasion. To quote from (Lenstra and Stevenhagen, 2000): “Artin’s
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reciprocity law is one of the cornerstones of class field theory. To illustrate its usefulness

in elementary number theory, we shall apply it to prove a recently observed property

of Mersenne primes.” The property of Mersenne primes referred to is the following:

Theorem 7.3.1. If Mp = 2p − 1 is prime and p ≡ 1 (mod 3), then Mp = x2 + 7y2

for some integers x, y and one always has x ≡ 0 (mod 8) and y ≡ ±3 (mod 8).

This was first observed by Franz Lemmermeyer and proved in (Lenstra and

Stevenhagen, 2000) using Artin’s reciprocity law. The special property of the usual

Mersenne primes referred to in Theorem 7.3.1 has the following generalization over

Q(
√

2).

7.4 Main theorem

Theorem 7.4.1. If N(Mp,α) is a rational prime, with α = 2 +
√

2, then N(Mp,α) is

always a quadratic residue (mod 7), and hence it can be written as x2 + 7y2. Also, x

is divisible by 8, and y ≡ ±3 (mod 8).

The first few Mersenne primes in Q(
√

2) with α = 2 +
√

2, as well as the represen-

tations of their norms as x2 + 7y2 is given below.

p Mp,α x2 + 7y2

5 431 162 + 7 · 52

7 5279 642 + 7 · 132

11 732799 8562 + 7 · 32

Table 7.7: Representation of Mersenne primes as x2 + 7y2 in Q(
√

2)

For p = 73,

N(Mp,α) = 851569055172258793218602741480913108991 =

(28615996544447548272)2 + 7 · (2161143775888286749)2
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For p = 89,

N(Mp,α) = 290315886781191681464330388772329064268797313023 =

(363706809248848497658560)2 + 7 · (150253711001099458172317)2

For p = 233,

N(Mp,α) = 1806047542728202303336800123116644178473780689153780654706531416

7911959518498581747712829157156517940837234519177963497324543.

The corresponding representation is

(86527345603258677818378326573842407929031070590321223524182584)2+

7 · (38865140256563104639356290982349294477380709218952585423373629)2.

The proof is based on Artin reciprocity law, one of the main results from an

important branch of algebraic number theory called class field theory. The theorem

is proved in two steps: In the first step it is shown that N(Mp,α) is always a quadratic

residue (mod 7). Next an outline of the proof that x is divisible by 8, and y ≡ ±3

(mod 8) is given.

Now it is shown that, if N(Mp,α) is a prime then, N(Mp,α) can be written as

x2 + 7y2. Since N(Mp,α) = 2
p+3
2 wp− 2p− 1, representing a prime in the form x2 + 7y2

depends on wp. The values of vp and wp are found (mod 7). It is clear from the

previous discussion that, for any odd n, N(un) = v2
n − 2w2

n = −1.

If un = vn + wn
√

2, then vn and wn satisfy the following recursions:

vn+1 = vn + 2wn and wn+1 = vn + wn, with initial conditions: v1 = 1, w1 = 1. The

above recursions are used to show that vn and wn satisfy the following:

vn+2 = 3vn + 4wn ; wn+2 = 2vn + 3wn

vn+3 = 7vn + 10wn ; wn+3 = 5vn + 7wn

vn+4 = 17vn + 24wn ; wn+4 = 12vn + 17wn
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vn+5 = 41vn + 58wn ; wn+5 = 29vn + 41wn

vn+6 = 99vn + 140wn ; wn+6 = 70vn + 99wn

From the above one may also easily obtain the following congruences:

{v6k+1} ≡ 1 (mod 7) ; {w6k+1} ≡ 1 (mod 7) (7.4.1)

{v6k+5} ≡ 6 (mod 7) ; {w6k+5} ≡ 1 (mod 7) (7.4.2)

Since only odd prime powers greater than 3 are considered, equations (7.4.1) and

(7.4.2) are meaningful.

Hence,

N(Mp,α) = 2
p+3
2 wp − 2p − 1 ≡ 2

p+3
2 − 2p − 1 (mod 7) (7.4.3)

Let us solve equation (7.4.3) for p > 3.

If p = 3k + 1 then 2p ≡ 2 (mod 7) and 2
p+3
2 ≡ 4 (mod 7), so

N(Mp,α) ≡ 1 (mod 7).

If p = 3k + 2 then 2p ≡ 4 (mod 7) and 2
p+3
2 ≡ 2 (mod 7), so

N(Mp,α) ≡ 4 (mod 7).

Thus from Theorem 7.2.5 it is straightforward that, N(Mp,α) can always be represented

as x2 + 7y2. As a background to the proof of theorem 7.4.1, the following lemma is

proved.

Lemma 7.4.2. If N(Mp,α) is a rational prime and N(Mp,α) = x2 + 7y2, then x ≡ 0

(mod 4), and y ≡ ±3 (mod 8).

Proof. From the previous discussion, we know

N(Mp,α) = x2 + 7y2. (7.4.4)

But N(Mp,α) = 2
p+3
2 wp − 2p − 1. Clearly we may take p > 6. So either p = 6k + 1 or

p = 6k + 5.
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If p = 6k + 1, then

N(Mp,α) = 2
6k+4

2 wp − 26k+1 − 1 ≡ −1 ≡ 7 (mod 8). (7.4.5)

If p = 6k + 5, then also,

N(Mp,α) = 2
6k+5

2 wp − 26k+5 − 1 ≡ 7 (mod 8). (7.4.6)

But right hand side of equation (7.4.4) is x2 + 7y2. We show that x must be even and

y odd.

For, if x is odd and y is even, then x2 ≡ 1 mod 8) and either y2 ≡ 0 (mod 8))

or y2 ≡ 4 (mod 8)). If y2 ≡ 0 (mod 8), then x2 + 7y2 ≡ 1 (mod 8)) contradicting

equations (7.4.5) and (7.4.6); and if y2 ≡ 4 (mod 8), then

x2 + 7y2 ≡ 1 + 7.4 ≡ 5 (mod 8),

again contradicting equations (7.4.5) and (7.4.6). Thus x is even and y is odd.

Hence by equation (7.4.4)

7 ≡ x2 + 7y2 ≡ x2 + 7 (mod 8),

since y2 ≡ 1 (mod 8) and so, x2 ≡ 0 (mod 8) implying x ≡ 0 (mod 4).

We now prove that y ≡ ±3 (mod 8)

Let p ≡ 1 (mod 6). From equation (7.4.5)

N(Mp,α) = x2 + 7y2 = 2
6k+4

2 wp − 26k+1 − 1.

Reducing modulo 16, we get N(Mp,α) ≡ −1 (mod 16). But N(Mp,α) = x2 + 7y2 and

x ≡ 0 (mod 4). Hence 7y2 ≡ −1 (mod 16), yielding y2 ≡ 9 (mod 16). This proves

that y ≡ ±3 (mod 8). The same result follows from equation (7.4.6) when p ≡ 5

(mod 6).

Below some known results about Artin Reciprocity are discussed which follow

mainly from (Lenstra and Stevenhagen, 2000).
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7.4.1 Artin’s reciprocity law

Frobenius map

Let R be a ring in which one has p = 0, and consider the pth power map

F : R→ R

defined by F (x) = xp. Then F respects the addition F (a + b) = F (a) + F (b), and

multiplication as well given by F (ab) = F (a)F (b) if R is commutative and finally

F (1) = 1. These three properties constitute the definition of a ring homomorphism,

which leads to the following theorem.

Theorem 7.4.3. Let p be a prime number and R a ring in which p = 0. Then the

pth power map R→ R is a ring homomorphism from R to itself.

The map in the theorem is called the Frobenius map after Georg Ferdinand

Frobenius. Many reciprocity laws including Artin’s, are concerned about classifying

which ring homomorphism R→ R is Frobeninus. In particular, the Frobenius map

F : Fp → Fp is the identity. Thus for any integer a, one has ap ≡ a mod p, proving

Fermat’s little theorem. Consider the quadratic extensions of Fp. Let d be a nonzero

integer, and p be a prime number not dividing 2d. Consider the ring Fp[
√
d], the

elements of which are by definition formal expressions of the form u+ v
√
d, with u

and v ranging over Fp. Applying Frobeninus map F to a typical element u + v
√
d,

one can find

F (u+ v
√
d) = (u+ v

√
d)p = up + vpd

p−1
2

√
d

This leads to investigate the value of d
p−1
2 in Fp. Thus from Fermat’s theorem

0 = dp − d = d.(d
p−1
2 − 1)(d

p−1
2 + 1).

Since Fp is a field, one of the three factors d, (d
p−1
2 − 1), (d

p−1
2 + 1) must vanish. As p

does not divide 2d, it is exactly one of the last two. The quadratic residue symbol
(
d
p

)
distinguishes between the two cases: for d

p−1
2 = 1 in Fp,

(
d
p

)
= 1 and for d

p−1
2 = −1

in Fp,
(
d
p

)
= −1. The Frobenius map is one of the two obvious automorphisms
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of Fp[
√
d]: for

(
d
p

)
= 1 it is the identity and for

(
d
p

)
= −1 it is the map sending

u+ v
√
d to u− v

√
d. The assignment u+ v

√
d to u− v

√
d is clearly reminiscent of

complex conjugation, and it defines an automorphism in more general circumstances

involving square roots.

Artin symbol

Consider higher degree extensions. Instead of X2 − d, let f ∈ Z[X] be any monic

polynomial of positive degree n such that the discriminant ∆(f) 6= 0. Instead of

Fp[
√
d], for a prime number p consider the ring Fp[α] consisting of all pn formal

expressions

u0 + u1α + ...+ un−1α
n−1

with coefficients ui ∈ Fp and f(α) = 0. The coeffcients of f are integers in Fp. In the

same manner replacing Fp by Q, one may define the ring Q[α], which is a field if and

only if f is irreducible.

Now, instead of two automorphisms assume that there exists a finite abelian group

G of ring automorphisms of Q[α] such that f =
∏

σ∈G(X − σ(α)) with coefficients in

Q[α]. The existence of G is a strong assumption. For example, in the important case

that f is irreducible it is equivalent to Q[α] being a Galois extension of Q with an

abelian Galois group.

The precise statement is as follows:

Theorem 7.4.4. Let p be a prime not dividing ∆(f). Then there is a unique element

ϕp ∈ G such that the Frobenius map of the ring Fp[α] is the reduction of ϕp mod p, in

the following sense: in the ring Q[α], one has

αp = ϕp(α) + p · (q0 + q1α + ...+ qn−1α
n−1)

for certain rational numbers q0, q1, ..., qn−1 of which the denominators are not divisible

by p.

The element ϕp of G is referred to as the Artin symbol of p. In the case n = 2 it

is virtually identical to the quadratic symbol
(

∆(f)
p

)
. Here are two illustrative results

which are immediate from theorem 7.4.4.
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Result 1

The degree of each irreducible factor of the polynomial f (mod p) in Fp[X] is equal

to the order of ϕp in the group G. In particular, ϕp = 1 in G if and only if

f (mod p) splits into n linear factors in Fp[X].

Result 2

The polynomial f is irreducible in Z[X] if and only if G is generated by the elements

ϕp, as p ranges over all prime numbers not dividig ∆(f).

Artin’s quadratic reciprocity law

There exists a group homomorphism

(Z/4dZ)∗ → {±1}

with

p (mod 4d)→
(
d

p

)
for any prime p not dividing 4d.

To generalize Artin’s quadratic reciprocity law to the situation of theorem 7.4.4 it is

natural to guess that 4d is replaced by ∆(f) and
(
d
p

)
by ϕp respectively.

Artin reciprocity over Q

There exists a group homomorphism

(Z/∆(f)Z)∗ → G with p (mod ∆(f))→ ϕp

for any prime number p not dividing ∆(f). It is surjective if and only if f is irreducible.

Here ϕp determines the splitting behaviour of the polynomial f mod p. Thus Artin

reciprocity yields a relation between f (mod p) and p (mod ∆(f)).
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7.4.2 Primes in a quadratic field

Let K = Q(
√
d). Finding primes in K is equivalent to solving the minimal polynomial

of K in finite fields Fp, for p prime, i.e., finding a ring homomorphism from OK → Fp,

where OK is the ring of integers of K.

For K = Q(
√
−7), the element ω = 1+

√
−7

2
is an integer of K, which is a zero of

the polynomial X2 −X + 2. Finding a ring homomorphism from OK to another ring

is equivalent to finding a zero of X2 −X + 2, in that ring. The element −2 ∈ Z/8Z
satisfies (−2)2 + (−2) + 2 = 8 = 0. Also, 8 = ω + 2ω̄ + 2 ∈ ω + 2OK .

Thus there is a ring homomorphism from

OK → Z/8Z

a+ bω → (a− 2b) mod 8

Kernel a of the map is generated by 8 and ω + 2. Thus a = (ω + 2)OK .

For eg., over F2, X2−X + 2 = X(X− 1), giving 2 ring homomorphisms OK → F2,

mapping ω to 0 and 1 in F2. Their kernels are prime ideals of index 2 in OK with

generators ω and ω̄. Also, the identity ωω̄ = 2 and ω + 2 = −ω3 shows that the ideal

a factors as the cube of prime ωOK .

Theorem 7.4.5. Let K be a number field, and let L be an abelian extension of K

with group G. Then for every prime p of K that does not divide ∆(L/K) there is a

unique element ϕp ∈ G with the property that the automorphism of OL/pOL induced

by ϕp is the Frobenius map of OL/pOL relative to p.

From Results 7.4.1 and 7.4.1 it is clear that ϕp determines the splitting behaviour

of f (mod p). Thus, Artin reciprocity yields a relation between f (mod p) and p

(mod ∆(f)). So, for p ≡ 1, 2, 4 (mod 7), X2 − X + 2 splits completely and Artin

symbol equals 1, whereas X2 −X + 2 is irreducible in Fp[X] for p ≡ 3, 5, 6 (mod 7)

and the Artin symbol equals −1.

For a prime p of K, write k(p)=OK/p, a finite field, and its cardinality, np, is called

the norm of p. Consider a ring homomorphism k(p)→ R for a suitable ring R and for

some prime p of K. The Frobenius map F of such a ring is the map R→ R defined

by F (x) = xnp . It is a ring homomorphism. It was proved by Galois in 1830 that the
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Frobenius map of the finite field k(p) itself is the identity. This generalizes Fermat’s

little theorem.

The inclusion map OK → OL induces a ring homomorphism k(p)→ OL/pOL. The

element ϕp ∈ G is called the Artin symbol of p. To give an example, let K =

Q[
√
−7] = Q[ω] with the minimal polynomial ω2 − ω + 2 = 0. Let L = K[β], where β

is a zero of X2 − ωX − 1. Since the discriminant is ω2 + 4 = ω + 2 is non-zero, and

L has dimension 2 over K, it is automatic that L is abelian over K with group G of

order 2.

The non-identity element ρ of G satisfies ρ(β) = ω − β = −1/β. ( β is a zero of

X2−ωX − 1). The ring of integers of L equals OL = OK +OK .β, and ∆(L/K) is the

OK ideal generated by the polynomial discriminant ω + 2; it is the ideal a = (ωOK)3.

One may compute ϕp for the prime p =
√
−7OK of norm 7:

note that the field k(p) = F7, 2ω − 1 =
√
−7 = 0, and therefore ω = 4. Because, in

F7, 2ω = 1 =⇒ ω = 2−1 ≡ 4 mod 7.

The ringOL/pOL is the quadratic extension F7[β] of F7 defined by β2 = ωβ+1 = 4β+1.

Also, an easy computation shows that, β7 = 4− ω = 4− β. This is same as the image

of ρ(β) = ω − β in OL/pOL. Thus, ϕp = ρ. It can be checked easily that, the primes

(8± 3
√
−7) of norm 127 has Artin symbol 1, i.e., β127 = 1 in F7.

The generalization of Artin reciprocity law to K can be drawn from theorem 7.4.5

like this: since every ingredient of the law for Q has a meaningful analog over K, the

natural replacement for the group (Z/mZ)∗ defined for any non-zero integer m, is the

group of invertible elements (OK/m)∗ of the finite ring OK/m, for a non-zero OK -

ideal m. A closer inspection reveals the difficulty:

If p is a prime of K coprime to ∆(L/K), there is no way to give a meaningful definition

to p mod ∆(L/K) as an element of (OK/∆(L/K))∗.

Ray class group

This problem can be resolved by defining a suitable multiplicative group modulo m

that contains an element p modulo m for each p coprime to m and that generalizes

(Z/mZ)∗; this group is called the ray class group modulo m denoted by Clm.

The description of Clm by means of generators and relations:

82



one generator [p] for each prime p ofOK coprime to m, and one relation [p1]. [p2]...[pt] =

1 for every sequence p1, p2, ..., pt of prime ideals for which there exists v ∈ OK satisfying

p1p2...pt = vOK , v ≡ 1 (mod m), v >> 0

An element ν ∈ K is called totally positive, denoted as ν >> 0, if each field

embedding K → R maps ν to a positive real number and (in case there are no such

embeddings) ν 6= 0.

Clm is a finite abelian group, and using the unique prime ideal factorization, the

definition can be reformulated as follows: Clm is the multiplicative group of equivalence

classes of nonzero ideals a of OK that are co-prime to m. The ideal a1 belongs to the

same class as a2 if and only if there exists v1, v2 ∈ OK with

v1a1 = v2a2, v1 ≡ v2 ≡ 1 (mod m) v1 >> 0, v2 >> 0

Thus, there is a group homomorphism from OK/m to Clm that sends (v mod m) to

the class of vOK whenever v >> 0; and although in general it is neither injective nor

surjective, it is both for K = Q.

Artin’s reciprocity law

There is a group homomorphism

Cl∆(L/K) → G

with

[p]→ ϕp

for every prime p of K coprime to ∆(L/K). It is surjective if and only if L is a

field. This is now called the Artin map. Thus, by definition of Cl∆(L/K), theorem

7.4.5 asserts that, ϕp1 .ϕp2 ...ϕpt = 1 whenever p1.p2...pt = vOK for some v ≡ 1

(mod ∆(L/K)) with v >> 0.
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Mersenne primes

Consider

K = Q[
√
−7] = Q[ω], ω2 − ω + 2 = 0

L = K[β], β2 − ωβ − 1 = 0.

Then ∆(L/K) = a is the kernel of the map OK → Z/8Z sending ω to −2. It is the

cube of the prime ωOK of norm 2. Hence,

(Z/8Z)∗ ≈ (OK/a)∗ → Cla

and its kernel is {±1}. Thus Cla is identified with the group (Z/8Z)∗/{±1} of order

2.

Consider the Artin map Cla → G = {1, ρ}. The Artin symbol of
√
−7OK is ρ;

hence it is an isomorphism and hence L is a field. Also, the discriminant of the

polynomial defining L is ω2 + 4 = ω + 2 = −ω3 not a square in K, and ωω̄ = 2, it is

immediate that, L = K[
√
−ω].

7.4.3 Recipe for calculating Artin symbol

If p = πOK is a prime of K = Q[
√
−7] = Q[ω] different from ωOK , then ϕp = 1 or

ρ according as π maps to ±1 or to ±3 under the map OK → Z/8Z that sends ω to

−2. For eg.,
√
−7 = 2ω − 1 maps to 3 mod 8 and the number 8 ± 3

√
−7 maps to

±3.3 = ±1 mod 8. This is because,
√
−7 = 2ω − 1 and ω maps to −2 under Z/8Z.

Now it is easy to see that,

8± 3
√
−7 ≡ ±3(2(−2)− 1) ≡ ±1 mod 8.

Consider an element of the form x+
√
−7y having norm x2 +7y2 which is a rational

prime. The Artin symbol equals 1 if x+ 3y is ±1 mod 8, and ρ otherwise.

From Lemma 7.4.2 it is clear that, x ≡ 0 (mod 4) and y ≡ ±3 (mod 8). Hence,

the Artin symbol is 1 if and only if x is divisible by 8.

Lemmermeyer’s observation is equivalent to the assertion that any prime of K =
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Q[
√
−7] of norm Mp has trivial Artin symbol in the quadratic extension L = K[

√
−ω].

Theorem 7.4.6. Let Mp = 2p − 1 be a Mersenne prime with p ≡ 1 (mod 3), and

write Mp = x2 + 7y2, x, y ∈ Z. Then x is divisible by 8.

Proof. Consider the extension N = K[
√
−ω,
√
−ω̄] of K that is composed of the

quadratic extension L = K[
√
−ω] and its conjugate K[

√
−ω̄]. It is of dimension 4

over K with a basis consisting of 1,
√
−ω,
√
−ω̄ and

√
−ω.
√
−ω̄ =

√
2. It is enough

to prove the congruence ξMp ≡ ξ (mod MpZN) for all ξ ∈ ZN , since it implies that

the Artin symbols of both the primes of norm Mp of K in the subextension L of N

are trivial. It turns out that N can also be realized in a second way: since
√

2 ∈ N , it

may be viewed as an extension of dimension 4 of the field E = Q(
√

2). Since

(
√
−ω ±

√
−ω̄)2 = −(ω + ω̄)± 2

√
−ω
√
−ω̄ = −1± 2

√
2

it follows that N is the composition of two conjugate quadratic extensions of E got

by adjoining square roots of −1 + 2
√

2 and −1− 2
√

2; the product of these square

roots is a square root of −7. Thus, N is an abelian extension of E .

In the new base field E = Q(
√

2), one can explicitly factor Mp:

Mp = 2p − 1 =
√

2
p−1√
2−1

.
√

2
p
+1√

2+1
.

Denote by vp and v̄p the two factors on the right. They belong to ZE = Z+Z.
√

2, are

conjugate in E and generate two primes of E of norm Mp. As vp and v̄p are coprime

with the product Mp, the congruence to be proved is equivalent to

ξMp ≡ ξ (mod vpZN)

and

ξMp ≡ ξ (mod v̄pZN)

for all ξ ∈ ZN ; i.e., it is sufficient to show that the Artin symbols of vpZE and v̄pZE in

the abelian extension N of E are both the identity. Let γ and δ denote the roots of the

quadratic polynomials X2 − (1 +
√

2)X + 1 and X2 − (1−
√

2)X + 1 of discriminants

−1 + 2
√

2 and −1 − 2
√

2 respectively. An automorphism of N is the identity if it

is so on both E[γ] and E[δ]. Thus it is enough to show that the Artin symbols

of vpZE and v̄pZE are trivial. This is shown to be true via Artin reciprocity. The
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discriminant of each of these extensions divides (−1 + 2
√

2)(−1 − 2
√

2)ZE = 7ZE.

From p ≡ 1 (mod 6), and (
√

2)6 = 8 ≡ 1 (mod 7) thus (
√

2)p ≡
√

2 (mod 7), so the

generators vp and v̄p of the Mersenne prime Mp are both 1 mod 7ZE. They are also

both totally positive and hence, by the Artin reciprocity law, their Artin symbols

must be trivial.

7.4.4 Proof of Main theorem

The proof given in theorem 7.4.6 carries over word-for-word, and so, an outline of the

proof is given. By definition, N(Mp,α) = (2+
√

2)p−1

1+
√

2
. (2−

√
2)p−1

1−
√

2
. Denote the two factors

on the right by vp and v̄p. It is easy to see that vp and v̄p are both totally positive.

Thus it is enough to compute the Artin symbols of vpZE and v̄pZE, and show that

they are both trivial.

It is enough to consider only two cases: p ≡ 1 (mod 6) and p ≡ 5 (mod 6). Since√
2 ≡ 3, 4 (mod 7), by taking

√
2 = 4 in vp and

√
2 = 3 in v̄p, a straightforward

computation shows that, vp ≡ 1 (mod 7) and v̄p ≡ 1 (mod 7). This completes the

proof.
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