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Design Charts for Optimal Design of 
T-beam Floors 

A. V. SUBRAMANYAM* 
S. R. ADIDAMt 

Mathematical programming techniques have been used to minimize the cost of T-beam floors. 
One-way continuous slabs and simply supported T-beams have been designed by the limit state 
approach in accordance with CP 110-1972 using M25 grade concrete and cold worked high 
yield reinforcement. Cost of one of the bays has been minimized using the DFP algorithm. 
Parametric studies have been carried out for various span ratios, cost ratios of materials and 
magnitudes of imposed loads. Use of the design charts developed has been explained. 

INTRODUCTION 

T-BEAM floor is one of the most common structural 
forms in the field of reinforced concrete construction. 
Therefore any saving that can be made will be highly 
beneficial. Cost of T-beam floor system can be 
considerably reduced using optimization techniques[l]. 
With the ~vailability of high strength materials, 
sufficient care must be taken to see that serviceability 
requirements like maximum allowable deflection, 
maximum crack width are not violated. This is best 
done using the limit state approach considering all the 
relevant limit states. 

In order to minimize the cost of T-beam floors, 
influence of variation in the cost of materials and 
magnitudes of imposed loads for different spans of slab 
and beam have to be taken into account. Unless the 
results are available in the form of design charts, 
optimization will not be of much use to the designer. 

SCOPE 

Materials used are M25 grade concrete and TorBar 
(cold worked high yield reinforcement). Mild condition 
of exposure has been assumed to arrive at the cover 
for reinforcement. The problem has been solved for the 
following cases: 

(1) ls, span of slab in mm: 2500, 3000, 3500, 4000, 
4500, 5000; 

(2) r, ratio of span of beam l~ to Is: 2.00, 2.25, 2.50; 
(3) qk, imposed load in kN/m2: 2, 3, 4; 
(4) cost ratio RI: 600, 1200, 1800; and 
(5) cost ratio R2: 20, 50, 80, 

where Rl=ra t io  of cost of concrete per m 3 to cost of 
reinforcement N -  1, 
and R2 =ratio of cost of form work per m 2 to cost of 
reinforcement N -  1. 
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FORMULATION OF THE PROBLEM 

The slab is designed as a one-way continuous slab 
using the moment coefficients given in CP 11012] and 
the beam designed as a simply supported beam. 
Figures 1 and 2 show details of slab and beam 

Cut of 50 % 

t '. + '. -i 
Fig. 1. Details of slab reinforcement. 
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Fig. 2. Details of beam reinforcement. 

reinforcement respectively. Minimum shear 
reinforcement has been provided for the whole span of 
the beam and additional shear reinforcement has been 
provided wherever required. Curtailment of main 
reinforcement has been done after checking for bond 
requirements. Side reinforcement has been provided 
whenever the depth of beam exceeds 750 mm, to 
control crack widths. Detailed computations, for the 
long term deflection of the beam including effects of 
creep and shrinkage and for the flexural crack widths 
of the beam, have been carried out as given in 
Appendices A2 and A3 of CP 110. 
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The design variables 
The design variables chosen are: 
(1) xl ,  thickness of slab; 
(2) x2, maximum area of main reinforcement per 

unit width of slab; 
(3) x3, total depth of beam; and 
(4) x4, area of tension reinforcement for beam. 

The objective function 
The objective function is the cost of the floor from 

the cer/tre of end span to the centre of next span. This 
includes the following: 

(1) cost of concrete including cost of materials, 
mixing, placing and curing; 

(2) cost of main, secondary, shear and side 
reinforcements; and 

(3) cost of form work. 

The objective function F can be written as, 

F= {l~x' +(x3-x')bw}R~ +{O'41~x2( 1+c1+c3~c2 c2/ 

+ 1.6 c4x 1 l~ + A~n + cl obw (2x + 2y)(1 + c6c7 ) 

+ c5x4}7, + {Is + 2(x 3 - x I )}R2, (1) 

where Asa is the area of side reinforcement; b w the 
width of rib of beam; el the moment coefficient for 
maximum positive moment in the end span; c 2 the 
moment coefficient for maximum negative moment at 
support;  c 3 the moment coefficient for maximum 
positive moment in the intermediate span; c 4 the 
coefficient for minimum secondary reinforcement for 
slab; c 5 the ratio of average length of tension 
reinforcement to the span of beam; c6 the ratio of 
additional shear reinforcement to the nominal shear 
reinforcement; c 7 the ratio of length of beam for which 
additional shear reinforcement has been provided to lb; 
c~0 the coefficient for minimum shear reinforcement; x 
the width of shear reinforcement link; y the depth of 
shear reinforcement link; and 7~ is the specific weight 
of steel. 

The third constraint ensures that Mu, the ultimate 
moment  of resistance of the beam, is not less than M, 
the bending moment  due to ultimate loads in the beam 

M-M,<=O. (4) 

The fourth constraint checks that the shear capacity 
V~ of the beam is at least equal to V, the shear force 
due to ultimate loads 

v -  v~<0. (5) 

The fifth constraint relates to the bond capacity of 
the beam. Even after curtailment, the maximum bond 
stress fbs should be less than the permissible value fdb~ 

.f.s --fab~ <---- O. (6) 

The sixth constraint checks that the maximum long 
term deflection in the beam, including effects of creep 
and shrinkage is not greater than the permissible value 

Ymax -- 1b/250<0" (7) 

The seventh constraint ensures that the maximum 
width of flexural cracks in the beam, w . . . .  is not 
greater than the permissible value 

Wmax-- 0.3 ~ 0. (8) 

For effective T-beam action, the area of transverse 
reinforcement through the full width of the flange 
should not be less than 0.3}o of the gross cross- 
sectional area of flange. Therefore, the eighth 
constraint can be stated as 

0.003 x I - x 2  <0 .  (9) 

The ninth constraint checks that the area of tension 
reinforcement for the beam Ast is not less than the 
minimum prescribed by the code 

0.0015 b j b - -  x4 < O, (10) 

The constraints 
The first constraint ensures that m,, the ultimate 

moment of resistance of slab per unit width, is not less 
than m, the bending moment due to ultimate loads per 
unit width 

m-m,<O.  (2) 

The second constraint makes sure that the maximum 
deflection in the slab, at service loads, does not exceed 
the prescribed value, by limiting the ratio of span I s to 
the effective depth of slab d~ to 26¢ for a continuous slab, 
where ~ depends on the stress in steel at service loads 

l~/d, - 26¢ < O. (3) 

where db is the effective depth of beam. 
The tenth constraint makes sure that the minimum 

area of main reinforcement provided in the slab is at 
least equal to the minimum prescribed by the code 

0.0015 d~-c3x2/c 2 <0. (11) 

To limit crack widths in beams, ~3max, the maximum 
strain in steel, at service loads, should not exceed 
(0.8fy)/E s ; thus, the eleventh constraint is 

g'rnzx 0"8 fY --( 0, (12) 
Es -- 

where J~ is the characteristic strength of reinforcement, 
and E s the modulus of elasticity of reinforcement. 
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Solution of the prohlem 
This is a constrained nonlinear programming prob- 

lem and has been solved using the interior penalty function 
method. Davidon Fletcher Powell algori thm[3] with 
cubic interpolation technique for one dimensional 
minimization has been adopted for the solution of this 
problem. Details of the solution are given in the 
Appendix. Computat ions  were carried out on a DEC- 
1090 system at the Indian Institute of Technology, 
Kanpur  and required an average cpu time of 15 
seconds for each set of data. 

R E S U L T S  A N D  D I S C U S S I O N  

Table 1 gives the optimal thickness of slab xx in mm 
and opt imal ,maximum main reinforcement for slab x2 
in mm2/m for different spans and different magnitudes 
of imposed loads. It has been observed that these 
values are independent of the cost ratios R~ and R2. 
Hence, only one design chart has been prepared to find 
x 1 (Fig. 3) and one to find x2 (Fig. 4). 
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Fig. 4. Design chart for optimal maximum main reinforce- 
ment for slab. 

Table 1. Optimal thickness and reinforcement for slab 

qk (kN/mz) 2.0 3.0 4.0 

x~ x2 x~ x2 x~ x~ 
1, (mm) (mm) (mm2/m) (mm) (mma/m) (mm) (mm2/m) 

2500 82 245 87 275 93 285 
3000 95 300 10l 340 107 365 
3500 108 370 115 420 121 450 
4000 122 445 128 500 135 540 
4500 134 550 142 605 150 640 
5000 147 665 156 705 164 760 
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Fig. 3. Design chart for optimal thickness of slab. 

Characteristic strength for TorBar  is 460N/mm 2 for 
bars up to and including 16mm diameter which is the 
range normally employed for slabs. If the area of main 
reinforcement is computed on the basis of this design 
stress, the stress in steel at service loads would be 
about 267 N / m m  2. Such an approach leads to a fairly 
thick slab. If the quanti ty of main reinforcement 
provided is more than that required from the strength 
point of view, steel stress at service loads gets reduced. 
This would result in a shallower slab which needs 
lesser quantity of concrete as well as secondary 
reinforcement for the slab in addition to reducing the 
dead load on the beam, thus leading to an overall 
reduction in the cost of the system. 

Effect of the variation in values of cost ratios R z and 
R 2 o n  optimal values of x 3 and x4, other parameters 
remaining constant, is shown in Tables 2 and 3. As can 
be intuitively guessed, depth of beam decreases with 
the increase in the relative cost of concrete or form 
work. As a consequence area of tension reinforcement 
increases in both the cases. 

It has been found that in the design of simply 
supported T-beams, it would be advisable to keep the 
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Table 2. Effect of variation of R~ on optimal values of x 3 and 
X4 

x 3 X 4 
R 1 (mm) (mm 2) 

qk =3.0kN/m2 
R 2 =20 600 650 975 

=3500mm 1200 555 1180 
=7000mm 1800 490 1370 

qk =4"0kN/m2 
Rz = 50 600 1130 2700 

=5000mm 1200 990 3150 
lb = ll,250mm 1800 910 3460 

Table 3. Effect of variation of R 2 o n  optimal values of x 3 and 
X4 

X 3 X 4 
R e (mm) (mm z) 

qk =3.0kN/m 2 
R l =600 20 650 975 

=3500mm 50 585 1110 
l~ =7000mm 80 525 1290 

qk =4.0kN/m2 
Rl =600 20 1340 2270 

=5000mm 50 1130 2700 
I b =ll ,250mm 80 1020 3015 
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Fig. 5. Design chart for optimal depth of beam. 

1500 

width of rib as small as practicable[4]. This would 
reduce the quantity of concrete, value of minimum 
shear reinforcement as well as the perimeter of the 
shear reinforcement link. The width of cracks would 
also be less as the reinforcement will be spaced at a 
closer interval. At the same time, it will not lead to any 
stability problems as the compression zone will be in 
the flange only where the effective width would be 
more than adequate. Functionally, the rib should be 
wide enough to place the reinforcement suitably. A 
width of 150mm is chosen here which is sufficient to 
accommodate 4 bars of 25mm in two rows as shown 
in Fig. 2(b). When 3 2 m m  bars are required to be 
used, the width is increased to 160mm. When the area 
of reinforcement exceeds 3217mm 2 (area of 4 bars of 
32 mm), the arrangement of reinforcement is as shown 
in Fig. 2(c). 

Figures 5-7 give the optimal depth of beam x 3 in 
mm and Figures 8-10 give the corresponding optimal 
area of tension reinforcement x 4 in mm 2 for different 
cost ratios R z and R2. The requirement that side 
reinforcement has to be provided whenever the depth 
of beam exceeds 750 mm is responsible for the peculiar 
discontinuities in these figures. The beam depth stays 
constant at 750mm even with an increase in the value 
of M, the bending moment  due to ultimate loads, till 
the cost of extra tension reinforcement required 
exceeds the cost of side reinforcement, extra concrete 
and additional form work required due to any increase 
in the depth of beam. 

It has been observed that x3 is not a very sensitive 
parameter and slight departure (maximum about 5 %) 
from the values reported here does not significantly 
affect the value of the objective function. 
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Fig. 6. Design chart for optimal depth of beam. 

C O N C L U S I O N S  

(1) Optimal values of the thickness and main 
reinforcement for the slab are independent of cost 
ratios R z and R2. 

(2) When the characteristic strength of reinforcement 
is high, it would be an optimal policy to provide more 
main reinforcement for the slab than is required from 
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Fig. 7. Design chart for optimal depth of beam. 
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Fig. 9. Design chart for optimal tension reinforcement for 
beam. 
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Fig. 8. Design chart for optimal tension reinforcement for 
beam. 
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Fig. 10. Design chart for optimal tension reinforcement for 
beam. 

the strength point of view in order to reduce the cost 
of the system. 

(3) The width of rib should be kept as small as 
practicable. Thus, it would be advantageous to group 
the bars vertically and to provide more than one layer 
when required. 

(4) The requirement that side reinforcement has to 
be provided when the depth of beam exceeds 750 mm 
leads to discontinuities in the design charts. 

(5) Considerable reduction in the cost of T-beam 
floors can be achieved using the design charts 
developed here. 

M E T H O D  O F  U S I N G  T H E  C H A R T S  

(1) I d e n t i f y  th e  s p a n  o f  s l a b  l s, s p a n  o f  b e a m  l~, 
m a g n i t u d e  o f  i m p o s e d  l o a d  qk, c o s t  o f  f i n i s h e d  c o n c r e t e  
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per  m 3 cost  o f  r e in forcement  per  n e w t o n  and  cost  of  
form work  per  m z. 

(2) F o r  the  given values of  I s and  qk, de t e rmine  the  
op t ima l  value of  x~ (mm) f rom Fig. 3 and  op t imal  
value of  X 2 (mm2/m)  f rom Fig. 4. 

(3) De t e rmine  the cos t  ra t ios  R t and  R 2. 
(4) Wi th  the k n o w n  value of  x I and  an  a s sumed  

value for x3, de t e rmine  M, the  m a x i m u m  b e n d i n g  
m o m e n t  in the  beam due  to u l t imate  load  in k N  m. 

(5) C h o o s e  the  a p p r o p r i a t e  char t  for the  k n o w n  
value of  R~ and  find the op t ima l  value of  x3 (mm) and  
x4 (mmZ). In te rpola te ,  whenever  it is necessary.  

(6) Hav ing  fixed the  ma in  des ign variables,  work  out  
the o the r  details.  

E X A M P L E  

Data :  / ~ = 3 9 0 0 m m ,  / b = 8 7 8 0 m m ,  q k = 3 k N / m  z. 

Cost  of  f inished c o n c r e t e = 4 8 0  Rupees /m3;  cost  o f  
r e i n f o r c e m e n t = 0 . 4  R u p e e s / N ;  a n d  cost  o f  fo rm work  
= 20 R u p e e s / m  z. 

F r o m  Figs.  3 and  4, for / s = 3 9 0 0 m m  and  qk 
= 3 k N / m  2, op t ima l  th ickness  of  s l a b = 1 2 5  mm,  and  
op t ima l  value of  m a x i m u m  area  of  main  r e in fo rcemen t  

= 4 8 5 m m Z / m .  N o w ,  R 1 = 4 8 0 / 0 . 4 = 1 2 0 0  and  R z 

= 20/0.4 = 50. 
Assuming  d e p t h  of  b e a m  as 7 5 0 m m ,  the  u l t imate  

load  will be 

{125 x 3 9 0 0 + ( 7 5 0 - 1 2 5 ) x  150} 

x 2 4 x  10 6 x 1 . 4 + 3  x 10-3 x 3900 x 1.6 

= 38.25 N / m m .  

M a x i m u m  be nd ing  m o m e n t  in b e a m  at u l t imate  load  

38.25 x 87802 
M - - 3.686 × 108 N m m  

8 

= 368.6 k N  m .  

F r o m  Fig.  6, c o r r e s p o n d i n g  to R 1 =1200 ,  R E = 5 0  a n d  
M = 368.6 

O p t i m a l  d e p t h  of  b e a m  = 650 mm.  

F r o m  Fig.  9, c o r r e s p o n d i n g  to  R x = 1 2 0 0 ,  R / = 5 0  
and  M = 368.6, 

op t ima l  area  of  t ens ion  r e i n f o r c e m e n t =  1 7 7 0 m m  2. 

A P P E N D I X  

Details of the solution of the optimization problem are 
given below. 

There are many techniques available for the solution of a 
constrained nonlinear programming problem. The interior 
penalty function method is one of the indirect methods. 
Penalty function methods transform the basic optimization 
problem into alternative formulations such that numerical 
solutions are sought by solving a sequence of unconstrained 
minimization problems. If the original problem is to minimize 
a function f ( X )  subject to constraints gj(X)<=O, j =  1,2 . . . .  m 
where m is the number of constraints, this problem is 

converted into an unconstrained minimization problem by 
constructing a function of the form 

m 

q~k = ~(X, r k) = f  (X) + r k ~ Gj[gj(X )], 
j - 1  

where Gj is some function of the constraint g j, and r k is a 
positive constant known as the penalty parameter. In this 
study Gj has been taken as equal to - [ l / g j ( X ) ] .  If the 
unconstrained minimization of the 4~-function is repeated for 
a sequence of values of the penalty parameter r k (k = 1, 2,. . . .) ,  
the solution may be brought to converge to that of the 
original problem. 

The procedure may be summarized as follows. 

(1) The solution is commenced from an initial feasible 
point X which satisfies all the constraints with strict 
inequality sign and an initial value of r I >0. k is set equal to 
1. 

(2) cp(X, rk) is minimized to get X~' using the DFP  
algorithm to find the search direction and cubic interpolation 
method to find the optimal step length. 

(3) X* is tested for optimality. If it is optimal, the process 
is terminated. 

(4) Otherwise the penalty parameter is modified as rk+ 1 
=cr k where c is less than 1. 

(5) The new value of k is set equal to k + l ,  the new 
starting point X 1 set equal to X* and the next minimization 
cycle commenced from step (2). 

DFP algorithm and cubic interpolation method used in the 
minimization procedure are briefly described below. 

(1) The method starts with an initial point XI in the design 
space and a n x n positive definite symmetric matrix H~ where 
n is the number of design variables. The iteration number i 
is set equal to 1. 

(2) The gradient of the modified objective function, V4~g, at 
the point X~ is computed and the search direction S~ is 
computed as 

S t : _ H i V ~ i .  

(3) The optimal step length 2* in the direction S~ is found 
using the cubic interpolation method in four stages. First the 
search direction S~ is normalized so that a step size 2 = 1 is 
acceptable. Then the derivative of the function ~b is used to 
establish bounds on 2* as the slope has to change from 
negative to positive at the optimum point. In the third stage 
an approximate value of 2* is found by approximating ~b(2) 
by a cubic polynomial. If the value of 2* found in the third 
stage does not satisfy the convergence criteria, the cubic 
polynomial is refitted in the fourth stage. A better point in the 
design space is then found as 

X~+~ = X~ + 2~*S~. 

(4) The new point X~+I is tested for optimality. If X~+ 1 is 
optimal, the iterative procedure is terminated. 

(5) Otherwise, the H matrix is updated as 

Hi+a = H i + M i + N i ,  

where 

and 

s~s~ 
Mt= oTs"L 

S~ Q,' 

(HiQi)(HiQi) r 
N i ~ 

Q~HIQ, 

~2~ = Vck(X, + 1 ) - V¢  (X,). 

(6) The new iteration number i is set equal to i+  l and the 
new iteration is commenced from step (2). 
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